Skip to main content

Circadian Regulation of Autophagy in the Heart Via the mTOR Pathway

  • Chapter
  • First Online:
Biochemistry of Apoptosis and Autophagy

Abstract

Disruption of the normal circadian clock has been associated with greater incidence of cardiovascular disease in shift workers. While the underlying mechanisms for this phenomenon are poorly understood, recent evidence from our laboratory has identified a novel signalling axis that functionally connects the mechanistic target of rapamycin (mTOR) to circadian biology in cardiac myocytes. The mTOR pathway regulates several processes such as cell growth, metabolism, and homeostasis throughout the body. mTOR has been linked to the cardiovascular systems through its regulation of both physiological and pathological processes, making it a desirable suspect for the investigating of its role in cardiovascular disease emanating from circadian dysfunction. Herein, we review the relevant literature highlighting the interworking of circadian interaction with metabolism including nutrient stress and autophagy within the cardiovascular system. We hope to use this information to spark interest in the potential for circadian intervened therapies designed for improving cardiovascular metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner S, Sadoshima J (2007) Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 100(10):1512–1521

    Google Scholar 

  2. Alers S, Loffler AS, Wesselborg S, Stork B (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32(1):2–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alibhai FJ, Tsimakouridze EV, Chinnappareddy N, Wright DC, Billia F, O’Sullivan ML, Pyle WG, Sole MJ, Martino TA (2014) Short-term disruption of diurnal rhythms after murine myocardial infarction adversely affects long term myocardial structure and function. Circ res 114(11):1713–1722

    Article  CAS  PubMed  Google Scholar 

  4. Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA (2003) Nicotinamide and PNC1 govern lifespan extension by caloric restriction in Saccharomyces cerevisiae. Nature 423(6936):181–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anderson KA, Maden AS, Olsen CA, Hirschey MD (2017) Metabolic control by sirtuins and other enzymes that sense NAD+, NADH, or their ratio. Biochim Biophys Acta 1858:991–998

    Article  CAS  PubMed Central  Google Scholar 

  6. Arendt J, Skene DJ, Middleton B, Lockley SW, Deacon S (1997) Efficacy of melatonin treatment in jet lag, shift work, and blindness. J Biol Rhythms 12:604–617

    Article  CAS  PubMed  Google Scholar 

  7. Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U (2008) SIRT1 regulates circadian clock gene expression through PER2 Deacetylation. Cell 134(2):134–328

    Article  CAS  Google Scholar 

  8. Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ (2005) Cardiac rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6:544–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bennardo M, Alibhai F, Tsimakouridze E, Chinnappareddy N, Podobed P, Reitz C, Pyle WG, Simpson J, Martimo TA (2016) Day-night dependence of gene expression and inflammatory responses in the remodelling murine heart post-myocardial infarction. Am J Physiol Regul Integr Comp Physiol 311(6):1243–1254

    Google Scholar 

  10. Biala AK, Kirshenbaum LA (2014) The interplay between cell death signalling pathways in the heart. Trends Cardiovasc Med 24:325–331

    Article  CAS  PubMed  Google Scholar 

  11. Bindu S, Pillai VB, Gupta MP (2016) Role of Sirtuins in regulating pathophysiology of the heart. Trends Endocrinol Metab 27:563–573

    Article  CAS  PubMed  Google Scholar 

  12. Boylston JA, Sun J, Chen Y, Gucek M, Sack MN, Murphy E (2015) Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury. J Mol Cell Cardiol 88:73–81

    Google Scholar 

  13. Bradley TD, Floras JS (2009) Obstructive sleep apnea and its cardiovascular consequences. Lancet 373:82–93

    Article  PubMed  Google Scholar 

  14. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) AKT promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868

    Article  CAS  PubMed  Google Scholar 

  15. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Sci 303(5666):2011–2015

    Google Scholar 

  16. Buttgereit F, Brand MD (1995) A hierarchy of ATP-consuming processes in mammalian cells. Biochem J 312 (Pt 1):163–167

    Google Scholar 

  17. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Milne JC, Elliot PJ, Puigserver P, Auwerx J (2009) AMPK regulated energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cao R, Li A, Cho HY, Lee B, Obrietan K (2010) Mammalian target of signalling modulates photic entrainment of the suprachiasmatic circadian clock. J Neurosci 30(8):6302–6314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cao R, Robinson B, Xu H, Gkogkas C, Khoutorsky A, Alain T, Yanagiya A, Nevarko T, Liu AC, Amir S, Sonenberg N (2013) Translation control of entrainment and synchrony of the suprachiasmatic circadian clock by mTOR/4E-BP1 signalling. Neuron 79(4):712–724

    Article  CAS  PubMed  Google Scholar 

  20. Carden DL, Granger DN (2000) Pathophysiology of ischemia-reperfusion injury. J Pathol 190:255–266

    Article  CAS  PubMed  Google Scholar 

  21. Chalkiadaki A, Guarente L (2012) High fat diet triggers inflammation induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell metab 16:180–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chang H-CC, Guarente L (2014) SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 25(3):138–145

    Google Scholar 

  23. Choo AY, Kim SG, Heiden MV, Mahoney SJ, Hieu V, Yoon SO, Cantley LC, Blenis J (2010) Glucose addiction of TSC null cells is caused by failed mTORC1 dependent balancing of metabolic demand with supply. Mol Cell 38(4):487–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cote CD, Rasmussen BA, Duca FA, Zadeh-Tahmasebi M, Baur JA, Daljeet M, Breen DM, Filippi BM, Lam TK (2015) Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network. Nat Med 21(5):498–505

    Article  CAS  PubMed  Google Scholar 

  25. Covington JD, Bajpeyi S (2016) The sirtuins: markers of metabolic health. Mol nutr 60:79–91

    CAS  Google Scholar 

  26. Curtis AM, Cheng Y, Kapoor S, Reilly D, Price TS, Fitzgerald GA (2007) Circadian variation of blood pressure and the vascular response to asynchronous stress. Proc Natl Acad Sci USA 104:3450–3455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dharaneeswaran H, Abid R, Yuan L, Dupuis D, Beeler D, Spokes KC, Janes L, Sciuto T, Kang PM, Jaminet SS, Dvorak A, Grant MA, Regan ER, Aird WC (2014) Foxo1-mediated activation of AKT plays a critical role in vascular homeostasis. Circ Res 115(2):238–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dorello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M (2006) Science 314(5798):467–471

    Article  CAS  Google Scholar 

  29. Durgan DJ, Young ME (2010) The cardiomyocyte circadian clock: emerging roles in heath and disease. Circ Res 106:647–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. D’Onofrio N, Servillo L, Balestrieri ML (2018) SIRT1 and SIRT6 signalling pathways in cardiovascular disease protection. Antioxidant Redox Signal. 28:711–732

    Article  CAS  Google Scholar 

  31. Edwards PA, Muroya H, Gould RG (1972). In vivo demonstration of the circadian thythm of cholesterol biosynthesis in the liver and intestine of the rat. J Lipid Res 13(3):396–401

    Google Scholar 

  32. Egan D, Kim J, Shaw RJ, Guan KL (2011) The autophagy initiating kinase Ulk1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7(6):643–644

    Article  PubMed  CAS  Google Scholar 

  33. Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S, Pendl T, Harger A, Schipke J, Zimmermann A, Schmidt A, Tong M, Ruckenstuhl C, Dammbrueck C, Gross AS, Herbst V, Magnes C, Trausinger G, Narath S, Meinitzer A, Hu Z, Kirsch A, Eller K, Carmona-Gutierrez D, Büttner S, Pietrocola F, Knittelfelder O, Schrepfer E, Rockenfeller P, Simonini C, Rahn A, Horsch M, Moreth K, Beckers J, Fuchs H, Gailus-Durner V, Neff F, Janik D, Rathkolb B, Rozman J, de Angelis MH, Moustafa T, Haemmerle G, Mayr M, Willeit P, von Frieling-Salewsky M, Pieske B, Scorrano L, Pieber T, Pechlaner R, Willeit J, Sigrist SJ, Linke WA, Mühlfeld C, Sadoshima J, Dengjel J, Kiechl S, Kroemer G, Sedej S, Madeo F (2016) Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med 22(12):1428–1438

    Google Scholar 

  34. Feige JN, Logouge M, Canto C, Strehle A, Houten SM, Milne JC, Lambert PD, Mataki C, Elliot PJ, Auwerx J (2008) Specific SIRT1 activation mimics low energy levels and protects against diet inducing metabolic disorders by enhancing fat oxidation. Cell metab 8:347–358

    Article  CAS  PubMed  Google Scholar 

  35. Flynn JM, O’Leary MN, Zambataro CA, Academia EC, Presley MP, Garret BJ, Zykovich A, Mooney SD, Strong R, Rosen CJ, Kapahi P, Nelson MD, Kennedy BK, Melov S (2013) Late life rapamycin treatment reverses age-related heart dysfunction. Aging Cell 12:851–862

    Article  CAS  PubMed  Google Scholar 

  36. Frangogiannis NG (2012) Regulation of the inflammatory response in cardiac repair. Cir Res. 110(1):159–173

    Article  CAS  Google Scholar 

  37. Gomes LC, Benedetto GD, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13(5):589–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Greer AL, Brunet A (2005) Foxo transcription factors at the interface between longevity and tumor suppression. Oncogene 24:7410–7425

    Article  CAS  PubMed  Google Scholar 

  39. Grillon JM, Johnson KR, Kotlo K, Danziger RS (2012) Non-histone lysine acetylated proteins in heart failure. Biochim Biophys Acta 1822:607–614

    Article  CAS  PubMed  Google Scholar 

  40. Gwinn DM, Shackleford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Anu rev pathol mech dis. 5:253–295

    Article  CAS  Google Scholar 

  42. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 26;110(2):177–189

    Google Scholar 

  43. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient energy sensor that maintains homeostasis. Nat Rev Mol Cell Biol 13:251–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hems DA, Rath EA, Verrinder TR (1975). Fatty acid synthesis in liver and adipose tissue of normal and genetically obese (ob/ob) mice during the 24-hour cycle. Biochem J 150(2):167–173

    Google Scholar 

  45. Huang N, Chelliah Y, Shan Y, Taylor C, Yoo SH, Partch C, Green CB, Zhang H, Takahashi JS (2012) Crystal structure of heterodimeric clock: BMAL1 transcriptional activator complex. Science 337:189–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Häseli S, Deubel S, Jung T, Grune T, Ott C (2020) Cardiomyocyte Contractility and Autophagy in a Premature Senescence Model of Cardiac Aging. Oxid Med Cell Longev

    Google Scholar 

  47. Ikeda Y, Shirakabe A, Maejima Y, Zhai P, Sciarretta S, Toli J, Nomura M, Mihara K, Egashira K, Ohishi M, Abdellatif M, Sadoshima J (2015) Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res 116(2):264–278

    Google Scholar 

  48. Inoki K, Li Y, Xu T, Guan KL (2003) Rheb GTPase is a direct target of TCS2 GAP activity and regulates mTOR signalling. Genes Dev 17:1829–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K, Wang CY, He X, MacDougald OA, You M, Williams BO, Guan KL (2006) TCS2 integrates WNT and energy signals via coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126:995–968

    Article  CAS  Google Scholar 

  50. Inoki K, Zhu T, Guan KL (2003) TSC-2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    Article  CAS  PubMed  Google Scholar 

  51. Jung-Hynes B, Schmit TL, Reagan-Shaw SR, Siddiqui IA, Mukhtar H, Ahmad N (2011) Melatonin, a novel Sirt1 inhibitor, imparts antiproliferative effect against prostate cancer in vitro in culture and in vivo in TRAMP model. J pineal res 50(2):140–149

    CAS  PubMed  Google Scholar 

  52. Kairo K, Pickering TG, Matsuo T, Hoshide S, Schwartz JE, Shimada K (2001) Stroke prognosis and abnormal nocturnal blood pressure falls in older hypertensives. Hypertension 38:852–857

    Article  Google Scholar 

  53. Kaizuka T, Hara T, Oshiro N, Kikkawa U, Yonezawa K, Takehana K, Iemura S, Natsune T, Mizushima N (2010) Tti1 and tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem 285:20109–20116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kasai T, Bradley TD (2011) Obstructive sleep apnea and heart failure: pathophysiologic and therapeutic implications. J am Coll Cardiol 57:119–127

    Article  PubMed  Google Scholar 

  55. Kijak E, Pyza E (2017) Tor signalling pathway and autophagy are involved in the regulation of circadian rhythms in behavior and plasticity of L2 interneurons in the brain of drosophila melanogaster. PLos One 12(2):e0171848

    Google Scholar 

  56. Kim J, Kundu M, Violett B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biol 13:132–141

    Article  CAS  PubMed  Google Scholar 

  57. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110(2):163–175

    Google Scholar 

  58. Knutsson A, Akerstedt T, Jonsson BG, Orth-Gomer K (1986) Increased risk of ischaemic heart disease in shift workers. Lancet 12;2(8498):89–92

    Google Scholar 

  59. Koentges C, Pfeil K, Meyer-Steenbuck M, Lother A, Hoffman MM, Odening KE, Hein L, Bode C, Bugger H (2016) Preserved recovery of cardiac functioning following ischemia reperfusion in mice lacking SIRT3. Can J Physiol Pharmacol 94(1):72–80

    Google Scholar 

  60. Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, Vasquez DS, Juguilon H, Panda S, Shaw RJ, Thompson CB, Evans RM (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation Sci 326(5951):437–440

    Google Scholar 

  61. Lancake P, Price RJ (1977) A new class of phytoalexins from grapevines. Experientia 33:151–152

    Article  Google Scholar 

  62. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293

    Google Scholar 

  63. Lee CH, Inoki K, Karbowniczek M, Petroulakis E, Sonenberg N, Henske EP, Guan KL (2007) Constitutive mTOR activation in TSC mutants sensitizes cells to energy starvation and genomic damage via p53. EMBO J 26(23):4812–4823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee DF, Kuo HP, Chen CT, Hsu JM, Chou CK, Wei Y, Sun HL, Li LY, Ping B, Huang WC, He X, Hung JY, Lai CC, Ding Q, Su JL, Yang JY, Sahin AA, Hortobagyi GN, Tsai FJ, Tsai CH, Hung MC (2007) IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130(3):440–455

    Article  CAS  PubMed  Google Scholar 

  65. Lepriver G, Rotblat B (2020) How does mTOR sense glucose starvation? AMPK is the usual suspect. Cell Death Discov 6:27

    Google Scholar 

  66. Lim JA, Li L, Shirihai OS, Trudeau KM, Puertollano R, Raben N (2017) Modulation of mTOR signalling as a strategy for the treatment of Pompe disease. EMBO Mol Med 9:353–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu GY, Sabatini DM (2020) mTOR at the nexus of nutrition, growth, aging, and disease. Mol Cell Biol 21:183–293

    CAS  Google Scholar 

  68. Lowery PL, Takahashi JS (2011) Genetics of circadian rhythms in mammalian model organisms. Adv Genet 74:175–230

    Article  CAS  Google Scholar 

  69. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100(6):914–922

    Google Scholar 

  70. Mayo JC, Sainz RM, Menendez PG, Cepas V, Tan DX, Reiter RJ (2017) Melatonin and sirtuins: a not-so unexpected relationship. J Pineal Res 62(2)

    Google Scholar 

  71. Mayo JC, Sainz RM, Menendez PG, Cepas V, Tan DX, Reiter RJ (2017) Melatonin and sirtuins: a not-so unexpected relationship. Pineal Res 62(2)

    Google Scholar 

  72. Mazelin L, Panthu B, Nicot AS, Belotti E, Tingtignac L, Teixeira G, Zhang Q, Risson V, Bass D, Delaune E, Derumeaux G, Taillandier D, Ohlmann T, Ovize M, Gangloff YG, Schaeffer L (2016) J Mol Cell Cardiol 97:213–225

    Article  CAS  PubMed  Google Scholar 

  73. Mcmullen JR, Shioi T, Zhang L, Tarnavski O, Sherwood MC, Kang PM, Izumo S (2003) Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci 100(21):12355–12360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mistry P, Duong A, Kirshenbaum L, Martino T (2017) Cardiac clock and preclinical translation. Heart Failure Clin 13(4):657–672

    Google Scholar 

  75. Mizushima N, Komatsu M (2011) Autophagy: enovation of cells and tissues. Cell 147(4):728–741

    Google Scholar 

  76. Morales CR, Li DL, Pedrozo Z, May HI, Jiang N, Kyrychenko V, Cho GW, Kim SY, Wang ZV, Rotter D, Rothermal BA, Schneider JW, Lavandero S, Gillette TG, Hill JA (2016) Inhibition of class I histone deacetylases blunts cardiac hypertrophy through TSC2-dependent mTOR repression. Sci Signal 9(422):ra34

    Google Scholar 

  77. Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116(4):551–563

    Google Scholar 

  78. Mughal W, Kirshenbaum LA (2011) Cell death signalling mechanisms in heart failure. Exp Clin Cardiol 16:102–108

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-Mediated chromatin remodeling and circadian control. Cell 1134(2):329–340

    Google Scholar 

  80. Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-Mediated chromatin remodeling and circadian control. Cell 134(2):329–340

    Google Scholar 

  81. Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13(5):619–624

    Google Scholar 

  82. Nogueiras R, Habegger KM, Chaudhary N, Finan B, Banks AS, Dietrich MO, Horvath TL, Sinclair DA, Pfluger P, Tschop MH (2012) Sirtuin 1 and sirtuin 3: physiological modulator of metabolism. Physiol Rev 92:1479–1514

    Article  CAS  PubMed  Google Scholar 

  83. Oka SI, Hirata T, Suzuki W, Naito D, Chen Y, Chin A, Yaginuma H, Saito T, Nagarajan N, Zhai P, Bhat S, Schesing K, Shao D, Hirabayashi Y, Yodoi J, Scriarretta S, Sadoshima J (2017) Thioredoxin-1 maintains mechanistic target of rapamycin (mTOR) function during oxidative stress in cardiomyocytes. J Biol Chem 292(46):18988–19000

    Google Scholar 

  84. Pastore N, Vainshtein A, Herz NJ, Huynh T, Brunetti L, Klisch TJ, Mutarelli M, Annunziata P, Kinouchi K, Brunetti-Pierri N, Sassone-Corsi P, Ballabio A (2019) Nutrient-sensitive transcription factors TFEB and TFE3 couple autophagy and metabolism to the peripheral clock. EMBO J 38(12)

    Google Scholar 

  85. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, Gray NS, Sabatini DM (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells required for survival. Cell 137(5):873–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pfeifer U, Scheller H (1975) A morphometric study of cellular autophagy including diurnal variations in kidney tubules of normal rats. J Cell Biol 64(3):608–621

    Google Scholar 

  87. Pfeifer U, Strauss P (1981) Autophagic vacuoles in heart muscle and liver. A comparative morphometric study including circadian variations in meal-fed rats. J Mol Cell Cardiol 13(1):37–49

    Google Scholar 

  88. Phillips LJ, Berry LJ (1970) Circadian rhythm of mouse liver phosphoenolpyruvate carboxykinase. Am J Physiol 218(5):1440–1444

    Google Scholar 

  89. Poulose N, Raju R (2015) Sirtuin regulation in aging and injury. Biochim Biophys Acta 1852(11):2442–2455

    Google Scholar 

  90. Rabinovich-Nikitin I, Lieberman B, Martino TA, Kirshenbaum LA (2019) Circadian-regulated cell death in cardiovascular diseases. Circulation 139:965–980

    Article  CAS  PubMed  Google Scholar 

  91. Rabinovich-Nikitin I, Rasouli M, Reitz CJ, Posen I, Margulets V, Dhingra R, Khatua TN, Thliveris JA, Martino TA, Kirshenbaum LA (2021) Mitochondrial autophagy and cell survival is regulated by the circadian Clock gene in cardiac myocytes during ischemic stress. Autophagy 1–19

    Google Scholar 

  92. Ramanathan C, Kathale ND, Liu D, Lee C, Freeman DA, Hogenesch JB, Cao R, Liu AC (2018) mTOR signalling regulates central and peripheral circadian clock function. PLos Genet 14(5):e1007369

    Google Scholar 

  93. Ramanathan C, Kathale ND, Liu D, Lee C, Freeman DA, Hogenesch JB, Cao R, Liu AC (2018) mTOR signalling regulates central and peripheral circadian clock function. PLos Genet 14(5)

    Google Scholar 

  94. Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev (4):1383–1435

    Google Scholar 

  95. Rena G, Guo S, Chichy S, Unterman TG, Cohen P (1999) Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem 274(24):17179–17183

    Article  CAS  PubMed  Google Scholar 

  96. Richards J, Gumz ML (2013) Mechanisms of the circadian clock in physiology. Am J Physiol Regul Integr Comp Physiol 304:1053–1064

    Article  CAS  Google Scholar 

  97. Russell LK, Finick BN, Kelly DP (2005) Mouse models of mitochondrial dysfunction and heart failure. J Mol Cell Cardiol 38(1):81–91

    Google Scholar 

  98. Russell LK, Finick BN, Kelly DP (2005) Mouse models of mitochondrial dysfunction and heart failure. J Mol Cell Cardiol 38:81–91

    Google Scholar 

  99. Sakamoto J, Miura T, Shimamoto K, Horio Y (2004) Predominant expression of Sir2α, an NAD-dependant histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett 556(1-3):281–286

    Google Scholar 

  100. Sakamoto J, Miura T, Shimamoto K, Horio Y (2004) Predominant expression of Sir2α, an NAD-dependant histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett 556:281–286

    Google Scholar 

  101. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM (2007) PRAS40 is an insulin inhibitor of the mTORC1 protein kinase. Mol Cell 25(6):903–915

    Article  CAS  PubMed  Google Scholar 

  102. Saxon RA, Sabatini DM (2017) mTOR signalling in growth, metabolism, and disease. Cell 169:361–371

    Article  CAS  Google Scholar 

  103. Schirone L, Forte M, Palmerio S, Yee D, Norcella C, Angelini F, Pagano F, Schiavon S, Bordin A, Carrizzo A, Vecchione C, Valenti V, Chimenti I, De Falco E, Sciarretta S, Frati G (2017) A review of the molecular mechanisms under lying the development and progression of cardiac remodelling. Oxid Med Cell Longev 2017:3920195

    Google Scholar 

  104. Schirone L, Forte M, Palmerio S, Yee D, Norcella C, Angelini F, Pagano F, Schiavon S, Bordin A, Carrizzo A, Vecchione C, Valenti V, Chimenti I, De Falco E, Sciarretta S, Frati G (2017) A review of the molecular mechanisms under lying the development and progression of cardiac remodelling. Oxid Med Cell Longev 2017:3920195

    Google Scholar 

  105. Schirone L, Forte M, Palmerio S, Yee D, Norcella C, Angelini F, Pagano F, Schiavon S, Bordin A, Carrizzo A, Vecchione C, Valenti V, Chimenti I, De Falco E, Sciarretta S, Frati G (2017) A review of the molecular mechanisms under lying the development and progression of cardiac remodelling. Oxid Med Cell Longev

    Google Scholar 

  106. Sciarretta S, Forte M, Frati G, Sadoshima J (2019) New insights into the role of mTOR signalling in the cardiovascular system. Circ Res 122(3):489–505

    Article  CAS  Google Scholar 

  107. Sciarretta S, Maejima Y, Zablocki D, Sadoshima J (2018) The role of autophagy in the heart. Annu Rev Physiol 80:1–26

    Article  CAS  PubMed  Google Scholar 

  108. Sciarretta S, Volpe N, Sadoshima J (2014) Mammalian target of rapamycin signalling in cardiac physiology and disease. Circ Res 114:549–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, Huynh T, Ferron M, Karsenty G, Vellard MC, Facchinetti V, Sabatini DM, Ballabio A (2012) A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 31(5):1095–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shang L, Wang X (2011) AMPK and mTOR coordinate the regulation of ULK1 and mammalian autophagy initiation. Autophagy 7(8):924–926

    Article  PubMed  Google Scholar 

  111. Shende P, Xu L, Morandi C, Pentassuglia L, Heim P, Lebboukh S, Berthonneche C, Pedrazzini T, Kaufmann BA, Hall MN, Ruegg MA, Brink M (2016) Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy. Cardiovasc Res 109:103–114

    Article  CAS  PubMed  Google Scholar 

  112. Soni SK, Basu P, Singaravel M, Sharma R, Pandi-Perumal SR, Cardinali DP, Reiter RJ (2021) Sirtuins and the circadian clock interplay in cardioprotection: focus on sirtuin 1. Cell Mol Life Sci 78(6):2503–2515

    Google Scholar 

  113. Spampanato C, Feeney E, Li L, Cardone M, Lim JA, Annunziata F, Zare H, Polishchuk R, Puertollano R, Parenti G, Ballabio A, Raben N (2013) Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol Med 5(5):691–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Stein S, Matter CM (2011) Protective roles of SIRT1 in atherosclerosis. Cell Cycle 10:640–647

    Article  CAS  PubMed  Google Scholar 

  115. Szydlowska K, Tymianski M (2010) Calcium, ischemia, and excitotoxicity. Cell Calcium 47:122–129

    Article  CAS  PubMed  Google Scholar 

  116. Takahashi JS, Hong HK, Ko CH, Mcdearmon EL (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat rev genet 9:764–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Takeda N, Maemura K (2011) Circadian clock and cardiovascular disease. J Cardiol 57:249–256

    Article  PubMed  Google Scholar 

  118. Tamai T, Yamaguchi O, Hikoso S, Takeda T, Taneike M, Oka T, Oyabu J, Murakawa T, Nakayama H, Uno Y, Horie K, Nishida K, Sonenberg N, Shah AM, Takeda J, Komuro I, Otsu K (2013) Rhen (ras homologue enriched in brain)-dependent mammalian target of rapamycin complex 1 (mTORC1) activation becomes indispensable for cardiac hypertrophic growth after early postnatal period. J Biol Chem 288:10176–10187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tamai T, Yamaguchi O, Hikoso S, Takeda T, Taneike M, Oka T, Oyabu J, Murakawa T, Nakayama H, Uno Y, Horie K, Nishida K, Sonenberg N, Shah AM, Takeda J, Komuro I, Otsu K (2013) Rheb (Ras homologue enriched in brain)-dependent mammalian target of rapamycin complex 1 (mTORC1) activation becomes indispensable for cardiac hypertrophic growth after early postnatal period. J Biol Chem 288(14):10176–10187

    Google Scholar 

  120. Um JH, Park SJ, Kang H, Yang S, Foretz M, McBurney MW, Kim MK, Viollet B, Chung JH (2010) AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 59:554–563

    Article  CAS  PubMed  Google Scholar 

  121. Verdecchia P, Schillaci G, Guerrieri M, Gatteschi C, Benemio G, Boldrini F, Porcellati C (1990) Circadian blood pressure changes and left ventricular hypertrophy in essential hypertension. Circulation 81(2):528–536

    Article  CAS  PubMed  Google Scholar 

  122. Völkers M, Toko H, Doroudgar S, Din S, Quijada P, Joyo AY, Ornelas L, Joyo E, Thuerauf DJ, Konstandin MH, Gude N, Glembotski CC, Sussman MA (2013) Pathological hypertrophy amelioration by PRAS40-mediated inhibition of mTORC1. Proc Natl Acad Sci U S A 110:12661–12666

    Article  PubMed  PubMed Central  Google Scholar 

  123. Wang B, Hasan MK, Alvarado E, Yuan H, Wu H, Chen WY (2011) NAMPT overexpression in prostate cancer and its contribution to tumor cell survival and stress response. Oncogene 30:907–921

    Article  CAS  PubMed  Google Scholar 

  124. Wang N, Yang G, Jia Z, Zhang H, Aoyagi T, Soodvilai S, Symons JD, Schnermann JB, Gonzalez FJ, Litwin SE, Yang T (2008) Vascular PPAR γ controls circadian variation in blood pressure and heart rate through BMAL1. Cell Metab 8(6):482–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang XX, Wang XL, Tong MM, Gan L, Chen H, Wu S, Chen J, Ru-Li L, Wu Y, Zhang H, Zhu Y, Li Y, He J, Wang M, Jiang W (2016) SIRT6 protects cardiomyocytes against ischemia reperfusion injury by augmenting FOXO3 α-dependent antioxidant defense mechanisms. Basic Res Cardiol 111(2):1–19

    Google Scholar 

  126. Wang XX, Wang XL, Tong MM, Gan L, Chen H, Wu S, Chen J, Ru-Li L, Wu Y, Zhang H, Zhu Y, Li Y, He J, Wang M, Jiang W (2016) SIRT6 protects cardiomyocytes against ischemia reperfusion injury by augmenting FOXO3 α-dependent antioxidant defense mechanisms. Basic Res Cardiol 1111(2):13

    Google Scholar 

  127. Wu X, Coa Y, Nie J, Liu H, Lu S, Hu X, Zhu J, Zhoa X, Chen J, Chen X, Yang Z, Li X (2013) Genetic and pharmacological inhibition of Rheb1-mTORC1 signaling exerts cardioprotection against adverse cardiac remodeling in mice. AM J Pathol 182(6):2005–2014

    Article  CAS  PubMed  Google Scholar 

  128. Wu JJ, Liu J, Chen EB, Wang JJ, Cao L, Narayan N, Fergusson MM, Rovira II, Allen M, Springer DA, Lago CU, Zhang S, DuBois W, Ward T, deCabo R, Gavrilova O, Mock B, Finkel T (2013) Increased mammalian lifespan and a segmental and tissue specific slowing of aging after genetic reduction of mTOR expression. Cell Rep 4(5):913–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wullschleger S, Loewith R, Hall MN (2006) TOR signalling in growth and metabolism. Cell 124(3):471–484

    Article  CAS  PubMed  Google Scholar 

  130. Xie M, Kong Y, Tan W, May H, Battiprolu PK, Pedrozo Z, Wang ZV, Morales C, Luo X, Cho G, Jiang N, Jessen ME, Warner JJ, Lavandero S, Gillette TG, Turer AT, Hill JA (2014) Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation 129:1139–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yamamota H, Schoonjans K, Auwerx (2007) Sirtuin functions in health and disease. Mol Endocrinol 21(8):1745–1755

    Google Scholar 

  132. Yang H, Yang T, Baur J, Perez E, Matsui T, Carmona JJ, Lamming DW, Souza-Pinto NC, Bohr VA, Rosenzweig A, Cabo RD, Sauce AA, Sinclair DA (2007) Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130(6):1095–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yang T, Fu M, Pestell R, Sauve AA (2006) SIRT1 and endocrine signalling. Trends Endocrinol Metab 17:186–191

    Google Scholar 

  134. Yu L, Wan F, Dutta S, Welsh S, Liu Z, Freundt E, Baehrecke EH, Lenardo M (2007) Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci USA 103(13):4952–4957

    Google Scholar 

  135. Zhang D, Contu R, Latronico MV, Zhang J, Zhang JL, Rizzi R, Catalucci D, Miyamoto S, Huang K, Ceci M, Gu Y, Dalton ND, Peterson KL, Guan KL, Brown JH, Chen J, Sonenberg N, Condorelli G (2010) mTORC1 regulates cardiac function and myocyte survival through 4EBP1 inhibition in mice. J Clin Invest 120:2805–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhang R, Lahens NF, Balance HI, Hughes ME, Hogenesch JB (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Scie USA 111(45):16219–16224

    Article  CAS  Google Scholar 

  137. Zhang Y, Long Z, Xu J, Tan S, Zhang N, Li A, Wang L, Wang T (2017) Hydrogen inhibits isoproterenol induced autophagy in cardiomyocytes in vitro and in vivo. Mol Med Rep 16:8253–8258

    Article  CAS  PubMed  Google Scholar 

  138. Zhang BC, Ma YF, Xiang CH (2018) SIRT2 decreases atherosclerotic plaque formation in low-density lipoprotein receptor-deficient mice by modulating macrophage polarization. Biomed pharmacother 97:1238–1242

    Article  CAS  PubMed  Google Scholar 

  139. Zhou J, Freeman TA, Ahmed F, Shang X, Mangano E, Gao E, Farber J, Wang Y, Ma XL, Woodgett J, Vagnozzi RJ, Lal H, Force T (2013) GSK-3 α is a central regulator of age-related pathologies in mice. J Clin Invest 123:1821–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhu Y, Pires KM, Whitehead KJ, Olsen CD, Wayment B, Zhang YC, Bugger H, Ilkun O, Litwin SE, Thomas G, Kozma SC, Abel ED (2013) Mechanistic target of rapamycin (mtor) is essential for murine embryonic health development and growth. PLoS one 8(1)

    Google Scholar 

Download references

Acknowledgements

This work was supported by a Foundation grant to L.A.K from the Canadian Institute for Health Research (CIHR) and Heart and Stroke Foundation of Canada, L.A.K. holds a Canada Research Chair in Molecular Cardiology. I.R.N received CIHR fellowship, M.L. Holds a University of Manitoba Graduate Studentship Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorrie A. Kirshenbaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Love, M., Rabinovich-Nikitin, I., Kirshenbaum, L.A. (2022). Circadian Regulation of Autophagy in the Heart Via the mTOR Pathway. In: Kirshenbaum, L.A. (eds) Biochemistry of Apoptosis and Autophagy. Advances in Biochemistry in Health and Disease, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-78799-8_9

Download citation

Publish with us

Policies and ethics