Skip to main content

Caspase Signaling Pathways as Convenors of Stress Adaptation

  • Chapter
  • First Online:
Biochemistry of Apoptosis and Autophagy

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 18))

  • 869 Accesses

Abstract

Caspase proteins are a group of proteases that manage intermediate and late stages of programmed cell death/apoptosis. Despite the core cell death function inherent to caspases, these proteins also maintain distinct nonapoptotic functions across most metazoan organisms. Here, we review the role of caspases in cell differentiation and stress adaptation, and the evolution of nonapoptotic activity of these proteases and related factors. We also discuss how caspases integrate other cell death signaling pathways to manage and guide stress response in the mammalian heart, independent of cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dick SA, Megeney LA (2013) Cell death proteins: an evolutionary role in cellular adaptation before the advent of apoptosis. BioEssays 35:974–983

    Article  CAS  PubMed  Google Scholar 

  2. Shrestha A, Megeney LA (2012) The non-death role of metacaspase proteases. Front Oncol 2:78

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zermati Y et al (2001) Caspase activation is required for terminal erythroid differentiation. J Exp Med 193:247–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fernando P, Kelly JF, Balazsi K, Slack RS, Megeney LA (2002) Caspase 3 activity is required for skeletal muscle differentiation. Proc Natl Acad Sci U S A 99:11025–11030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arama E, Agapite J, Steller H (2003) Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev Cell 4:687–697

    Article  CAS  PubMed  Google Scholar 

  6. Fernando P, Brunette S, Megeney LA (2005) Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB J Off Publ Fed Am Soc Exp Biol 19:1671–1673

    Google Scholar 

  7. Fernando P, Megeney LA (2007) Is caspase-dependent apoptosis only cell differentiation taken to the extreme? FASEB J Off Publ Fed Am Soc Exp Biol 21:8–17

    Google Scholar 

  8. Lee REC, Brunette S, Puente LG, Megeney LA (2010) Metacaspase Yca1 is required for clearance of insoluble protein aggregates. Proc Natl Acad Sci U S A 107:13348–13353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shrestha A, Puente LG, Brunette S, Megeney LA (2013) The role of Yca1 in proteostasis. Yca1 regulates the composition of the insoluble proteome. J Proteomics 81:24–30

    Google Scholar 

  10. Hill SM, Hao X, Liu B, Nystrom T (2014) Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae. Science 344:1389–1392

    Article  CAS  PubMed  Google Scholar 

  11. Shrestha A, Brunette S, Stanford WL, Megeney LA (2019) The metacaspase Yca1 maintains proteostasis through multiple interactions with the ubiquitin system. Cell Discovery 5:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    Article  CAS  PubMed  Google Scholar 

  13. Opferman JT, Korsmeyer SJ (2003) Apoptosis in the development and maintenance of the immune system. Nat Immunol 4:410–415

    Article  CAS  PubMed  Google Scholar 

  14. Cory S (1998) Cell death throes. Proc Natl Acad Sci U S A 95:12077–12079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McIlroy D, Sakahira H, Talanian RV, Nagata S (1999) Involvement of caspase 3-activated DNase in internucleosomal DNA cleavage induced by diverse apoptotic stimuli. Oncogene 18:4401–4408

    Article  CAS  PubMed  Google Scholar 

  16. Bassnett S (2002) Lens organelle degradation. Exp Eye Res 74:1–6

    Article  CAS  PubMed  Google Scholar 

  17. Abdul-Ghani M et al (2011) Wnt11 promotes cardiomyocyte development by caspase-mediated suppression of canonical Wnt signals. Mol Cell Biol 31:163–178

    Article  CAS  PubMed  Google Scholar 

  18. Chambers I et al (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655

    Article  CAS  PubMed  Google Scholar 

  19. Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  20. Yamanaka S (2008) Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell Prolif 41(Suppl 1):51–56

    PubMed  Google Scholar 

  21. Fujita J et al (2008) Caspase activity mediates the differentiation of embryonic stem cells. Cell Stem Cell 2:595–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dick SA et al (2015) Caspase 3 cleavage of Pax7 inhibits self-renewal of satellite cells. Proc Natl Acad Sci U S A 112:E5246–E5252

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Baena-Lopez LA et al (2018) Novel initiator caspase reporters uncover previously unknown features of caspase activating cells. Development 145:1–11

    Google Scholar 

  24. Weaver BP, Weaver YM, Mitani S, Han M (2017) Coupled caspase and N-End rule ligase activities allow recognition and degradation of pluripotency factor LIN-28 during non-apoptotic development. Dev Cell 41:665–673

    Google Scholar 

  25. Lee REC, Puente LG, Kaern M, Megeney LA (2008) A non-death role of the yeast metacaspase: Yca1p alters cell cycle dynamics. PLoS One 3:e2956

    Google Scholar 

  26. Putinski C et al (2013) Intrinsic-mediated caspase activation is essential for cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 110:E4079–E4087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Balakumar P, Singh M (2006) The possible role of caspase-3 in pathological and physiological cardiac hypertrophy in rats. Basic Clin Pharmacol Toxicol 99:418–424

    Article  CAS  PubMed  Google Scholar 

  28. Gao L et al (2015) Novel role for caspase-activated DNase in the regulation of pathological cardiac hypertrophy. Hypertens 65:871–881

    Article  CAS  Google Scholar 

  29. Abdul-Ghani M, Megeney LA (2008) Rehabilitation of a contract killer: caspase-3 directs stem cell differentiation. Cell Stem Cell 2:515–516

    Article  CAS  PubMed  Google Scholar 

  30. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:742–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Communal C et al (2002) Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci U S A 99:6252–6256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Putinski C, Abdul-Ghani M, Brunette S, Burgon PG, Megeney LA (2018) Caspase cleavage of gelsolin is an inductive cue for pathologic cardiac hypertrophy. J Am Heart Assoc 7:e010404

    Google Scholar 

  33. Abdul-Ghani M et al (2017) Cardiotrophin 1 stimulates beneficial myogenic and vascular remodeling of the heart. Cell Res 27:1195–2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Petrof BJ, Hussain SN (2016) Ventilator-induced diaphragmatic dysfunction: what have we learned? Curr Opin Crit Care 22:67–72

    Article  PubMed  Google Scholar 

  35. Tian M et al (2010) Cardiac alterations in cancer-induced cachexia in mice. Int J Oncol 37:347–353

    CAS  PubMed  Google Scholar 

  36. Hasselgren PO, Fischer JE (1997) The ubiquitin-proteasome pathway: review of a novel intracellular mechanism of muscle protein breakdown during sepsis and other catabolic conditions. Ann Surg 225:307–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mitch WE, Goldberg AL (1996) Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med 335:1897–1905

    Google Scholar 

  38. Du J et al (2004) Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 113:115–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang J, Forsberg NE (1998) Role of calpain in skeletal-muscle protein degradation. Proc Natl Acad Sci U S A 95:12100–12105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nelson WB, Smuder AJ, Hudson MB, Talbert EE, Powers SK (2012) Cross-talk between the calpain and caspase-3 proteolytic systems in the diaphragm during prolonged mechanical ventilation. Crit Care Med 40:1857–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Talbert EE, Smuder AJ, Min K, Kwon OS, Powers SK (2013) Calpain and caspase-3 play required roles in immobilization-induced limb muscle atrophy. J Appl Physiol 114:1482–1489

    Article  CAS  PubMed  Google Scholar 

  42. Li H, Malhotra S, Kumar A (2008) Nuclear factor-kappa B signaling in skeletal muscle atrophy. J Mol Med (Berl) 86:1113–1126

    Article  CAS  Google Scholar 

  43. Lamkanfi M, Festjens N, Declercq W, Vanden Berghe T, Vandenabeele P (2007) Caspases in cell survival, proliferation and differentiation. Cell Death Differ 14:44–55

    Article  CAS  PubMed  Google Scholar 

  44. Baker DJ, Hepple RT (2006) Elevated caspase and AIF gene expression correlate with progression of sarcopenia during aging in male F344BN rats. Exp Gerontol 41:1149–1156

    Article  CAS  PubMed  Google Scholar 

  45. Supinski GS, Ji X, Callahan LA (2010) p38 Mitogen-activated protein kinase modulates endotoxin-induced diaphragm caspase activation. Am J Respir Cell Mol Biol 43:121–127

    Article  CAS  PubMed  Google Scholar 

  46. Supinski GS, Ji X, Callahan LA (2009) The JNK MAP kinase pathway contributes to the development of endotoxin-induced diaphragm caspase activation. Am J Physiol Regul Integr Comp Physiol 297:R825–R834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martin LJ (1999) Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J Neuropathol Exp Neurol 58:459–471

    Article  CAS  PubMed  Google Scholar 

  48. Li M et al (2000) Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 288:335–339

    Article  CAS  PubMed  Google Scholar 

  49. Inoue H et al (2003) The crucial role of caspase-9 in the disease progression of a transgenic ALS mouse model. EMBO J 22:6665–6674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wootz H, Hansson I, Korhonen L, Napankangas U, Lindholm D (2004) Caspase-12 cleavage and increased oxidative stress during motoneuron degeneration in transgenic mouse model of ALS. Biochem Biophys Res Commun 322:281–286

    Article  CAS  PubMed  Google Scholar 

  51. Su JH et al (2000) DNA damage and activated caspase-3 expression in neurons and astrocytes: evidence for apoptosis in frontotemporal dementia. Exp Neurol 163:9–19

    Article  CAS  PubMed  Google Scholar 

  52. Igaz LM et al (2009) Expression of TDP-43 C-terminal Fragments in Vitro Recapitulates Pathological Features of TDP-43 Proteinopathies. J Biol Chem 284:8516–8524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nonaka T, Kametani F, Arai T, Akiyama H, Hasegawa M (2009) Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Hum Mol Genet 18:3353–3364

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Y-J et al (2009) Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci U S A 106:7607–7612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Suzuki H, Lee K, Matsuoka M (2011) TDP-43-induced death is associated with altered regulation of BIM and Bcl-xL and attenuated by caspase-mediated TDP-43 cleavage. J Biol Chem 286:13171–13183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gamas P et al (2009) Inhibition of imatinib-mediated apoptosis by the caspase-cleaved form of the tyrosine kinase Lyn in chronic myelogenous leukemia cells. Leukemia 23:1500–1506

    Article  CAS  PubMed  Google Scholar 

  57. Hashimoto Y, Niikura T, Ito Y, Nishimoto I (2000) Multiple mechanisms underlie neurotoxicity by different types of Alzheimer’s disease mutations of amyloid precursor protein. J Biol Chem 275:34541–34551

    Article  CAS  PubMed  Google Scholar 

  58. Biundo F et al (2017) Abolishing Tau cleavage by caspase at Aspartate(421) causes memory/synaptic plasticity deficits and pre-pathological Tau alterations. Transl Psychiatry 7:e1198

    Google Scholar 

  59. Ravalin M et al (2019) Specificity for latent C termini links the E3 ubiqutin ligase CHIP to caspases. Nat Chem Biol 15:786–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Minina EA et al (2020) Classification and nomenclature of metacaspases and paracaspases: no more confusion with caspases. Mol Cell 77:927–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rubinstein AD, Kimchi A (2012) Life in the balance—a mechanistic view of the crosstalk between autophagy and apoptosis. J Cell Sci 125:5259–5268

    Article  CAS  PubMed  Google Scholar 

  62. Rohn TT et al (2011) Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer’s disease brain. Neurobiol Dis 43:68–78

    Article  CAS  PubMed  Google Scholar 

  63. Pandey UB et al (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447:859–863

    Article  CAS  PubMed  Google Scholar 

  64. Bell BD et al (2008) FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proc Natl Acad Sci U S A 105:16677–16682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Laussmann MA et al (2011) Proteasome inhibition can induce an autophagy-dependent apical activation of caspase-8. Cell Death Differ 18:1584–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. DeVorkin L et al (2014) The Drosophila effector caspase Dcp-1 regulates mitochondrial dynamics and autophagic flux via SesB. J Cell Biol 205:477–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. DeVorkin L, Gorski SM (2014) A mitochondrial-associated link between an effector caspase and autophagic flux. Autophagy 10:1866–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Adams JW et al (1998) Enhanced Galphaq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci U S A 95:10140–10145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang JY, Widmann C (2001) Antiapoptotic signaling generated by caspase-induced cleavage of RasGAP. Mol Cell Biol 21:5346–5358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang J-Y et al (2004) Partial cleavage of RasGAP by caspases is required for cell survival in mild stress conditions. Mol Cell Biol 24:10425–10436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Weber GF, Menko AS (2005) The canonical intrinsic mitochondrial death pathway has a non-apoptotic role in signaling lens cell differentiation. J Biol Chem 280:22135–22145

    Article  CAS  PubMed  Google Scholar 

  72. De Botton S et al (2002) Platelet formation is the consequence of caspase activation within megakaryocytes. Blood 100:1310–1317

    Article  PubMed  CAS  Google Scholar 

  73. Koenig A, Russell JQ, Rodgers WA, Budd RC (2008) Spatial differences in active caspase-8 defines its role in T-cell activation versus cell death. Cell Death Differ 15:1701–1711

    Article  CAS  PubMed  Google Scholar 

  74. Feinstein-Rotkopf Y, Arama E (2009) Can’t live without them, can live with them: roles of caspases during vital cellular processes. Apoptosis 14:980–995

    Article  PubMed  Google Scholar 

  75. Kamradt MC, Chen F, Sam S, Cryns VL (2002) The small heat shock protein alpha B-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation. J Biol Chem 277:38731–38736

    Article  CAS  PubMed  Google Scholar 

  76. Chis R et al (2012) alpha-Crystallin B prevents apoptosis after H2O2 exposure in mouse neonatal cardiomyocytes. Am J Physiol Heart Circ Physiol 303:H967–H978

    Article  CAS  PubMed  Google Scholar 

  77. O’Riordan MXD, Bauler LD, Scott FL, Duckett CS (2008) Inhibitor of apoptosis proteins in eukaryotic evolution and development: a model of thematic conservation. Dev Cell 15:497–508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Potts MB, Vaughn AE, McDonough H, Patterson C, Deshmukh M (2005) Reduced Apaf-1 levels in cardiomyocytes engage strict regulation of apoptosis by endogenous XIAP. J Cell Biol 171:925–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Piacentino V et al (2012) X-linked inhibitor of apoptosis protein-mediated attenuation of apoptosis, using a novel cardiac-enhanced adeno-associated viral vector. Hum Gene Ther 23:635–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Murray TVA et al (2008) A non-apoptotic role for caspase-9 in muscle differentiation. J Cell Sci 121:3786–3793

    Article  CAS  PubMed  Google Scholar 

  81. Smith MI, Huang YY, Deshmukh M (2009) Skeletal muscle differentiation evokes endogenous XIAP to restrict the apoptotic pathway. PLoS One 4:e5097

    Google Scholar 

  82. Kurokawa M, Kornbluth S (2009) Caspases and kinases in a death grip. Cell 138:838–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Desagher S et al (2001) Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8. Mol Cell 8:601–611

    Article  CAS  PubMed  Google Scholar 

  84. Turowec JP et al (2014) An unbiased proteomic screen reveals caspase cleavage is positively and negatively regulated by substrate phosphorylation. Mol Cell Proteomics 13:1184–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Duncan JS et al (2011) A peptide-based target screen implicates the protein kinase CK2 in the global regulation of caspase signaling. Sci Signal 4:ra30

    Google Scholar 

  86. Gonzalez N et al (2016) Ck2-dependent phosphorylation is required to maintain Pax7 protein levels in proliferating muscle progenitors. PLoS One 11:e0154919

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn A. Megeney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Putinski, C., Megeney, L.A. (2022). Caspase Signaling Pathways as Convenors of Stress Adaptation. In: Kirshenbaum, L.A. (eds) Biochemistry of Apoptosis and Autophagy. Advances in Biochemistry in Health and Disease, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-78799-8_5

Download citation

Publish with us

Policies and ethics