Skip to main content

The Role of FGF2 isoforms in Cell Survival in the Heart

  • Chapter
  • First Online:
Biochemistry of Apoptosis and Autophagy

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 18))

Abstract

Multiple cardiac pathologies culminate in heart failure which is a major cause of morbidity and mortality world-wide. Although great advances have been made, there remain a need to identify additional strategies to manage heart disease and improve outcomes. Identifying the various signals and pathways that contribute to cardiac cell pathology and death, as well as those that promote cell survival and overall protection can lead to new ways to intervene and ameliorate the adverse consequences of various pathological stimuli. This chapter will focus on fibroblast growth factor 2 (FGF2) isoforms as potential agents and/or targets of cardioprotective therapies. In the first part we will provide an overview of the biological properties of FGF2 isoforms, including regulation of expression and secretion, localization, and signalling pathways triggered by FGF2, based on literature from diverse cell types but especially cardiac cells. Our focus will be on molecular signals associated with the causation of, or prevention from, various forms of cells death, by apoptosis, necrosis and dysregulated autophagy, and their relationship to different FGF2 isoforms. In the second part we will present an overview of major experimental models of cardiac pathology that have addressed the effects of endogenous and/or administered FGF2 isoforms. We anticipate that a picture will emerge highlighting both the complexity as well as the potential of FGF2 isoforms in the context of heart disease prevention and management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kardami E, Detillieux K, Ma X, Jiang Z, Santiago JJ, Jimenez SK, Cattini PA (2007) Fibroblast growth factor-2 and cardioprotection. Heart Fail Rev 12(3–4):267–277

    Article  CAS  PubMed  Google Scholar 

  2. Ornitz DM, Itoh N (2015) The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4(3):215–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sun D, Wang W, Wang X, Wang Y, Xu X, Ping F, Du Y, Jiang W, Cui D (2018) bFGF plays a neuroprotective role by suppressing excessive autophagy and apoptosis after transient global cerebral ischemia in rats. Cell Death Dis 9(2):172

    Article  PubMed  PubMed Central  Google Scholar 

  4. Abdelhakim M, Lin X, Ogawa R (2020) The Japanese experience with basic fibroblast growth factor in cutaneous wound management and scar prevention: a systematic review of clinical and biological aspects. Dermatol Ther (Heidelb) 10(4):569–587

    Article  Google Scholar 

  5. Shibata F, Baird A, Florkiewicz RZ (1991) Functional characterization of the human basic fibroblast growth factor gene promoter. Growth factors (Chur, Switzerland) 4(4):277–287

    Article  CAS  Google Scholar 

  6. Jimenez SK, Sheikh F, Jin Y, Detillieux KA, Dhaliwal J, Kardami E, Cattini PA (2004) Transcriptional regulation of FGF-2 gene expression in cardiac myocytes. Cardiovasc Res 62(3):548–557

    Article  CAS  PubMed  Google Scholar 

  7. Lee JG, Kay EP (2012) NF-kappaB is the transcription factor for FGF-2 that causes endothelial mesenchymal transformation in cornea. Invest Ophthalmol Vis Sci 53(3):1530–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Santiago JJ, McNaughton LJ, Koleini N, Ma X, Bestvater B, Nickel BE, Fandrich RR, Wigle JT, Freed DH, Arora RC, Kardami E (2014) High molecular weight fibroblast growth factor-2 in the human heart is a potential target for prevention of cardiac remodeling, PLoS One 9(5):e97281

    Google Scholar 

  9. Holcik M, Sonenberg N (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6(4):318–327

    Article  CAS  PubMed  Google Scholar 

  10. Arnaud E, Touriol C, Boutonnet C, Gensac MC, Vagner S, Prats H, Prats AC (1999) A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. Mol Cell Biol 19(1):505–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bonnal S, Pileur F, Orsini C, Parker F, Pujol F, Prats AC, Vagner S (2005) Heterogeneous nuclear ribonucleoprotein A1 is a novel internal ribosome entry site trans-acting factor that modulates alternative initiation of translation of the fibroblast growth factor 2 mRNA. J Biol Chem 280(6):4144–4153

    Article  CAS  PubMed  Google Scholar 

  12. Vagner S, Touriol C, Galy B, Audigier S, Gensac MC, Amalric F, Bayard F, Prats H, Prats AC (1996) Translation of CUG- but not AUG-initiated forms of human fibroblast growth factor 2 is activated in transformed and stressed cells. J Cell Biol 135(5):1391–1402

    Article  CAS  PubMed  Google Scholar 

  13. Liu L, Doble BW, Kardami E (1993) Perinatal phenotype and hypothyroidism are associated with elevated levels of 21.5–22-kDa basic fibroblast growth factor in cardiac ventricles. Dev Biol 157(2):507–516

    Google Scholar 

  14. Santiago JJ, Ma X, McNaughton LJ, Nickel BE, Bestvater BP, Yu L, Fandrich RR, Netticadan T, Kardami E (2011) Preferential accumulation and export of high molecular weight FGF-2 by rat cardiac non-myocytes. Cardiovasc Res 89(1):139–147

    Article  CAS  PubMed  Google Scholar 

  15. Touriol C, Roussigne M, Gensac MC, Prats H, Prats AC (2000) Alternative translation initiation of human fibroblast growth factor 2 mRNA controlled by its 3’-untranslated region involves a Poly(A) switch and a translational enhancer. J Biol Chem 275(25):19361–19367

    Article  CAS  PubMed  Google Scholar 

  16. Yu PJ, Ferrari G, Pirelli L, Galloway AC, Mignatti P, Pintucci G (2008) Thrombin cleaves the high molecular weight forms of basic fibroblast growth factor (FGF-2): a novel mechanism for the control of FGF-2 and thrombin activity. Oncogene 27(18):2594–2601

    Article  CAS  PubMed  Google Scholar 

  17. Doble BW, Fandrich RR, Liu L, Padua RR, Kardami E (1990) Calcium protects pituitary basic fibroblast growth factors from limited proteolysis by co-purifying proteases. Biochem Biophys Res Commun 173(3):1116–1122

    Article  CAS  PubMed  Google Scholar 

  18. Kardami E, Fandrich RR (1989) Basic fibroblast growth factor in atria and ventricles of the vertebrate heart. J Cell Biol 109(4 Pt 1):1865–1875

    Article  CAS  PubMed  Google Scholar 

  19. Rizvi F, DeFranco A, Siddiqui R, Negmadjanov U, Emelyanova L, Holmuhamedov A, Ross G, Shi Y, Holmuhamedov E, Kress D, Tajik AJ, Jahangir A (2016) Chamber-specific differences in human cardiac fibroblast proliferation and responsiveness toward simvastatin. Am J Physiol Cell Physiol 311(2):C330–C339

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I (1989) Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28(4):1737–1743

    Article  CAS  PubMed  Google Scholar 

  21. Okada-Ban M, Thiery JP, Jouanneau J (2000) Fibroblast growth factor-2. Int J Biochem Cell Biol 32(3):263–267

    Article  CAS  PubMed  Google Scholar 

  22. Liao S, Bodmer JR, Azhar M, Newman G, Coffin JD, Doetschman T, Schultz Jel J (2010) The influence of FGF2 high molecular weight (HMW) isoforms in the development of cardiac ischemia-reperfusion injury. J Mol Cell Cardiol 48(6):1245–1254

    Google Scholar 

  23. Koleini N, Kardami E (2017) Autophagy and mitophagy in the context of doxorubicin-induced cardiotoxicity. Oncotarget 8(28):46663–46680

    Article  PubMed  PubMed Central  Google Scholar 

  24. Clarke MS, Caldwell RW, Chiao H, Miyake K, McNeil PL (1995) Contraction-induced cell wounding and release of fibroblast growth factor in heart. Circ Res 76(6):927–934

    Article  CAS  PubMed  Google Scholar 

  25. Dahl JP, Binda A, Canfield VA, Levenson R (2000) Participation of Na, K-ATPase in FGF-2 secretion: rescue of ouabain-inhibitable FGF-2 secretion by ouabain-resistant Na. K-ATPase alpha subunits, Biochemistry 39(48):14877–14883

    CAS  PubMed  Google Scholar 

  26. Keller M, Ruegg A, Werner S, Beer HD (2008) Active caspase-1 is a regulator of unconventional protein secretion. Cell 132(5):818–831

    Article  CAS  PubMed  Google Scholar 

  27. Martin-Sanchez F, Diamond C, Zeitler M, Gomez AI, Baroja-Mazo A, Bagnall J, Spiller D, White M, Daniels MJ, Mortellaro A, Penalver M, Paszek P, Steringer JP, Nickel W, Brough D, Pelegrin P (2016) Inflammasome-dependent IL-1beta release depends upon membrane permeabilisation. Cell Death Differ 23(7):1219–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Javidi-Sharifi N, Martinez J, English I, Joshi SK, Scopim-Ribeiro R, Viola SK, Edwards DKT, Agarwal A, Lopez C, Jorgens D, Tyner JW, Druker BJ, Traer E (2019) FGF2-FGFR1 signaling regulates release of Leukemia-Protective exosomes from bone marrow stromal cells. eLife 8

    Google Scholar 

  29. Regeenes R, Silva PN, Chang HH, Arany EJ, Shukalyuk AI, Audet J, Kilkenny DM, Rocheleau JV (2018) Fibroblast growth factor receptor 5 (FGFR5) is a co-receptor for FGFR1 that is up-regulated in beta-cells by cytokine-induced inflammation. J Biol Chem 293(44):17218–17228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stachowiak MK, Birkaya B, Aletta JM, Narla ST, Benson CA, Decker B, Stachowiak EK (2015) Nuclear FGF receptor-1 and CREB binding protein: an integrative signaling module. J Cell Physiol 230(5):989–1002

    Article  CAS  PubMed  Google Scholar 

  31. Piotrowicz RS, Maher PA, Levin EG (1999) Dual activities of 22–24 kDA basic fibroblast growth factor: inhibition of migration and stimulation of proliferation. J Cell Physiol 178(2):144–153

    Article  CAS  PubMed  Google Scholar 

  32. Pasumarthi KB, Kardami E, Cattini PA (1996) High and low molecular weight fibroblast growth factor-2 increase proliferation of neonatal rat cardiac myocytes but have differential effects on binucleation and nuclear morphology. Evidence for both paracrine and intracrine actions of fibroblast growth factor-2, Circ Res 78(1):126–136

    Google Scholar 

  33. Zhang L, Parry GC, Levin EG (2013) Inhibition of tumor cell migration by LD22-4, an N-terminal fragment of 24-kDa FGF2, is mediated by Neuropilin 1. Cancer Res 73(11):3316–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Koleini N, Nickel BE, Nagalingam RS, Landry NM, Fandrich RR, Cheung DYC, Dixon IM, Czubryt MP, Jassal DS, Cattini PA, Kardami E (2021) Elimination of endogenous high molecular weight FGF2 prevents pressure-overload-induced systolic dysfunction linked to increased FGFR1 activity and NR1D1 expression. Cell Tissue Res https://doi.org/10.1007/s00441-021-03465-0

  35. Srisakuldee W (2014) Studies on the role of connexin 43 phosphorylation in the injury—resistant heart. University of Manitoba, Physiology

    Google Scholar 

  36. Jin Y, Pasumarthi KB, Bock ME, Lytras A, Kardami E, Cattini PA (1994) Cloning and expression of fibroblast growth factor receptor-1 isoforms in the mouse heart: evidence for isoform switching during heart development. J Mol Cell Cardiol 26(11):1449–1459

    Article  CAS  PubMed  Google Scholar 

  37. Peters KG, Marie J, Wilson E, Ives HE, Escobedo J, Del Rosario M, Mirda D, Williams LT (1992) Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature 358(6388):678–681

    Article  CAS  PubMed  Google Scholar 

  38. Iwai-Kanai E, Hasegawa K, Fujita M, Araki M, Yanazume T, Adachi S, Sasayama S (2002) Basic fibroblast growth factor protects cardiac myocytes from iNOS-mediated apoptosis. J Cell Physiol 190(1):54–62

    Article  CAS  PubMed  Google Scholar 

  39. House SL, House BE, Glascock B, Kimball T, Nusayr E, Schultz JE, Doetschman T (2010) Fibroblast growth factor 2 mediates isoproterenol-induced cardiac hypertrophy through activation of the extracellular regulated Kinase. Mol Cell Pharmacol 2(4):143–154

    CAS  PubMed  PubMed Central  Google Scholar 

  40. House SL, Branch K, Newman G, Doetschman T, Schultz Jel J (2005) Cardioprotection induced by cardiac-specific overexpression of fibroblast growth factor-2 is mediated by the MAPK cascade. Am J Physiol Heart Circ Physiol 289(5):H2167–H2175

    Google Scholar 

  41. Ma X, Dang X, Claus P, Hirst C, Fandrich RR, Jin Y, Grothe C, Kirshenbaum LA, Cattini PA, Kardami E (2007) Chromatin compaction and cell death by high molecular weight FGF-2 depend on its nuclear localization, intracrine ERK activation, and engagement of mitochondria. J Cell Physiol 213(3):690–698

    Article  CAS  PubMed  Google Scholar 

  42. Hausenloy DJ, Tsang A, Yellon DM (2005) The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med 15(2):69–75

    Article  CAS  PubMed  Google Scholar 

  43. Ediriweera MK, Tennekoon KH, Samarakoon SR (2019) Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: biological and therapeutic significance. Semin Cancer Biol

    Google Scholar 

  44. Hers I, Vincent EE, Tavare JM (2011) Akt signalling in health and disease. Cell Signal 23(10):1515–1527

    Article  CAS  PubMed  Google Scholar 

  45. Mortenson MM, Galante JG, Gilad O, Schlieman MG, Virudachalam S, Kung HJ, Bold RJ (2007) BCL-2 functions as an activator of the AKT signaling pathway in pancreatic cancer. J Cell Biochem 102(5):1171–1179

    Article  CAS  PubMed  Google Scholar 

  46. Ye G, Fu Q, Jiang L, Li Z (2018) Vascular smooth muscle cells activate PI3K/Akt pathway to attenuate myocardial ischemia/reperfusion-induced apoptosis and autophagy by secreting bFGF. Biomed Pharmacother Biomed Pharmacother 107:1779–1785

    Google Scholar 

  47. Ling L, Gu S, Cheng Y, Ding L (2018) bFGF promotes Sca1+ cardiac stem cell migration through activation of the PI3K/Akt pathway. Mol Med Rep 17(2):2349–2356

    CAS  PubMed  Google Scholar 

  48. Chen Q, Chen X, Han C, Wang Y, Huang T, Du Y, Dong Z (2016) FGF-2 Transcriptionally down-regulates the expression of BNIP3L via PI3K/Akt/FoxO3a signaling and inhibits necrosis and mitochondrial dysfunction induced by high concentrations of hydrogen peroxide in H9c2 Cells. Cell Physiol Bioche: Int J Exp Cell Physiol Biochem Pharmacol 40(6):1678–1691

    Article  CAS  Google Scholar 

  49. Liu MH, Li GH, Peng LJ, Qu SL, Zhang Y, Peng J, Luo XY, Hu HJ, Ren Z, Liu Y, Tang H, Liu LS, Tang ZH, Jiang ZS (2016) PI3K/Akt/FoxO3a signaling mediates cardioprotection of FGF-2 against hydrogen peroxide-induced apoptosis in H9c2 cells. Mol Cell Biochem 414(1–2):57–66

    CAS  PubMed  Google Scholar 

  50. Cheng Y, Li Z, Kardami E, Loh YP (2016) Neuroprotective effects of LMW and HMW FGF2 against amyloid beta toxicity in primary cultured hippocampal neurons. Neurosci Lett 632:109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang Z, Wang Y, Ye J, Lu X, Cheng Y, Xiang L, Chen L, Feng W, Shi H, Yu X, Lin L, Zhang H, Xiao J, Li X (2015) bFGF attenuates endoplasmic reticulum stress and mitochondrial injury on myocardial ischaemia/reperfusion via activation of PI3K/Akt/ERK1/2 pathway. J Cell Mol Med 19(3):595–607

    Article  CAS  PubMed  Google Scholar 

  52. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168(6):960–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sciarretta S, Volpe M, Sadoshima J (2014) Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res 114(3):549–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Koleini N, Nickel BE, Wang J, Roveimiab Z, Fandrich RR, Kirshenbaum LA, Cattini PA, Kardami E (2017) Fibroblast growth factor-2-mediated protection of cardiomyocytes from the toxic effects of doxorubicin requires the mTOR/Nrf-2/HO-1 pathway. Oncotarget 8(50):87415–87430

    Article  PubMed  PubMed Central  Google Scholar 

  55. Padua RR, Merle PL, Doble BW, Yu CH, Zahradka P, Pierce GN, Panagia V, Kardami E (1998) FGF-2-induced negative inotropism and cardioprotection are inhibited by chelerythrine: involvement of sarcolemmal calcium-independent protein kinase C. J Mol Cell Cardiol 30(12):2695–2709

    Article  CAS  PubMed  Google Scholar 

  56. Doble BW, Ping P, Kardami E (2000) The epsilon subtype of protein kinase C is required for cardiomyocyte connexin-43 phosphorylation. Circ Res 86(3):293–301

    Article  CAS  PubMed  Google Scholar 

  57. Srisakuldee W, Makazan Z, Nickel BE, Zhang F, Thliveris JA, Pasumarthi KB, Kardami E (2014) The FGF-2-triggered protection of cardiac subsarcolemmal mitochondria from calcium overload is mitochondrial connexin 43-dependent. Cardiovasc Res 103(1):72–80

    Article  CAS  PubMed  Google Scholar 

  58. Wang J, Nachtigal MW, Kardami E, Cattini PA (2013) FGF-2 protects cardiomyocytes from doxorubicin damage via protein kinase C-dependent effects on efflux transporters. Cardiovasc Res 98(1):56–63

    Article  CAS  PubMed  Google Scholar 

  59. Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369(Pt 1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bailly K, Soulet F, Leroy D, Amalric F, Bouche G (2000) Uncoupling of cell proliferation and differentiation activities of basic fibroblast growth factor. FASEB J 14(2):333–344

    Article  CAS  PubMed  Google Scholar 

  61. Jiang ZS, Srisakuldee W, Soulet F, Bouche G, Kardami E (2004) Non-angiogenic FGF-2 protects the ischemic heart from injury, in the presence or absence of reperfusion. Cardiovasc Res 62(1):154–166

    Article  CAS  PubMed  Google Scholar 

  62. Koleini N, Nickel BE, Edel AL, Fandrich RR, Ravandi A, Kardami E (2018) Non-mitogenic FGF2 protects cardiomyocytes from acute doxorubicin-induced toxicity independently of the protein kinase CK2/heme oxygenase-1 pathway. Cell Tissue Res 374(3):607–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ma X (2004) Casein kinase 2 mediates nuclear disruption by high molecular weight fibroblast growth factor 2. University of Manitoba, Anatomy

    Google Scholar 

  64. Pellieux C, Foletti A, Peduto G, Aubert JF, Nussberger J, Beermann F, Brunner HR, Pedrazzini T (2001) Dilated cardiomyopathy and impaired cardiac hypertrophic response to angiotensin II in mice lacking FGF-2. J Clin Invest 108(12):1843–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schultz JE, Witt SA, Nieman ML, Reiser PJ, Engle SJ, Zhou M, Pawlowski SA, Lorenz JN, Kimball TR, Doetschman T (1999) Fibroblast growth factor-2 mediates pressure-induced hypertrophic response. J Clin Invest 104(6):709–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhou M, Sutliff RL, Paul RJ, Lorenz JN, Hoying JB, Haudenschild CC, Yin M, Coffin JD, Kong L, Kranias EG, Luo W, Boivin GP, Duffy JJ, Pawlowski SA, Doetschman T (1998) Fibroblast growth factor 2 control of vascular tone. Nat Med 4(2):201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang ZG, Wang Y, Huang Y, Lu Q, Zheng L, Hu D, Feng WK, Liu YL, Ji KT, Zhang HY, Fu XB, Li XK, Chu MP, Xiao J (2015) bFGF regulates autophagy and ubiquitinated protein accumulation induced by myocardial ischemia/reperfusion via the activation of the PI3K/Akt/mTOR pathway. Sci Rep 5:9287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Padua RR, Sethi R, Dhalla NS, Kardami E (1995) Basic fibroblast growth factor is cardioprotective in ischemia-reperfusion injury. Mol Cell Biochem 143(2):129–135

    Article  CAS  PubMed  Google Scholar 

  69. Cuevas P, Carceller F, Martinez-Coso V, Asin-Cardiel E, Gimenez-Gallego G (2000) Fibroblast growth factor cardioprotection against ischemia-reperfusion injury may involve K+ ATP channels. Eur J Med Res 5(4):145–149

    CAS  PubMed  Google Scholar 

  70. Unger EF, Banai S, Shou M, Lazarous DF, Jaklitsch MT, Scheinowitz M, Correa R, Klingbeil C, Epstein SE (1994) Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol 266(4 Pt 2):H1588–H1595

    CAS  PubMed  Google Scholar 

  71. Sontag DP, Wang J, Kardami E, Cattini PA (2013) FGF-2 and FGF-16 protect isolated perfused mouse hearts from acute doxorubicin-induced contractile dysfunction. Cardiovasc Toxicol 13(3):244–253

    Article  CAS  PubMed  Google Scholar 

  72. Hirst CJ, Herlyn M, Cattini PA, Kardami E (2003) High levels of CUG-initiated FGF-2 expression cause chromatin compaction, decreased cardiomyocyte mitosis, and cell death. Mol Cell Biochem 246(1–2):111–116

    Article  CAS  PubMed  Google Scholar 

  73. Pasumarthi KB, Doble BW, Kardami E, Cattini PA (1994) Over-expression of CUG- or AUG-initiated forms of basic fibroblast growth factor in cardiac myocytes results in similar effects on mitosis and protein synthesis but distinct nuclear morphologies. J Mol Cell Cardiol 26(8):1045–1060

    Article  CAS  PubMed  Google Scholar 

  74. Ma X, Hirst C, Santiago JJ, Fandrich RR, Sussman MA, Kardami E (2009) The high molecular weight FGF2-induced cardiomyocyte cell death is prevented by nuclear Akt and Pim-1 kinases, and requires the activity of intracellular FGF2 receptor. Circ Res 105(P13):E13

    Google Scholar 

  75. Jiang ZS, Jeyaraman M, Wen GB, Fandrich RR, Dixon IM, Cattini PA, Kardami E (2007) High- but not low-molecular weight FGF-2 causes cardiac hypertrophy in vivo; possible involvement of cardiotrophin-1. J Mol Cell Cardiol 42(1):222–233

    Article  CAS  PubMed  Google Scholar 

  76. Jimenez SK, Jassal DS, Kardami E, Cattini PA (2011) Protection by endogenous FGF-2 against isoproterenol-induced cardiac dysfunction is attenuated by cyclosporine A. Mol Cell Biochem 357(1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  77. Liao S, Bodmer J, Pietras D, Azhar M, Doetschman T, Schultz Jel J (2009) Biological functions of the low and high molecular weight protein isoforms of fibroblast growth factor-2 in cardiovascular development and disease. Dev Dyn 238(2):249–264

    Google Scholar 

  78. Rao Z, Shen D, Chen J, Jin L, Wu X, Chen M, Li L, Chu M, Lin J (2020) Basic fibroblast growth factor attenuates injury in myocardial infarction by enhancing hypoxia-inducible factor-1 alpha accumulation. Front Pharmacol 11:1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Martínez-Martínez E, Brugnolaro C, Ibarrola J, Ravassa S, Buonafine M, López B, Fernández-Celis A, Querejeta R, Santamaria E, Fernández-Irigoyen J, Rábago G, Moreno MU, Jaisser F, Díez J, González A, López-Andrés N (2019) CT-1 (Cardiotrophin-1)-Gal-3 (Galectin-3) axis in cardiac fibrosis and inflammation. Hypertension 73(3):602–611

    Article  PubMed  Google Scholar 

  80. Wang EY, Biala AK, Gordon JW, Kirshenbaum LA (2012) Autophagy in the heart: too much of a good thing? J Cardiovasc Pharmacol 60(2):110–117

    Article  CAS  PubMed  Google Scholar 

  81. Cinque L, De Leonibus C, Iavazzo M, Krahmer N, Intartaglia D, Salierno FG, De Cegli R, Di Malta C, Svelto M, Lanzara C, Maddaluno M, Wanderlingh LG, Huebner AK, Cesana M, Bonn F, Polishchuk E, Hubner CA, Conte I, Dikic I, Mann M, Ballabio A, Sacco F, Grumati P, Settembre C (2020) MiT/TFE factors control ER-phagy via transcriptional regulation of FAM134B. EMBO J 39(17):e105696

    Google Scholar 

  82. Dhingra R, Margulets V, Chowdhury SR, Thliveris J, Jassal D, Fernyhough P, Dorn GW, Kirshenbaum LA (2014) Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling, (2nd edn). Proc Natl Acad Sci U S A 111(51):E5537–E5544

    Google Scholar 

  83. Zhang HY, Wang ZG, Wu FZ, Kong XX, Yang J, Lin BB, Zhu SP, Lin L, Gan CS, Fu XB, Li XK, Xu HZ, Xiao J (2013) Regulation of autophagy and ubiquitinated protein accumulation by bFGF promotes functional recovery and neural protection in a rat model of spinal cord injury. Mol Neurobiol 48(3):452–464

    Article  PubMed  Google Scholar 

  84. Koleini N, Santiago JJ, Nickel BE, Sequiera GL, Wang J, Fandrich RR, Jassal DS, Dhingra S, Kirshenbaum LA, Cattini PA, Kardami E (2019) Elimination or neutralization of endogenous high-molecular-weight FGF2 mitigates doxorubicin-induced cardiotoxicity. Am J Physiol Heart Circu Physiol 316(2):H279-H288

    Google Scholar 

  85. Kardami E, Koleini N, Nickel B, Nagalingam R, Landry NM, Fandrich RR, Cheung DYC, Dixon IM, Czubryt MP, Jassal DS, Cattini PA (2020) Changes in gene expression caused by genetic elimination of high molecular weight FGF2 are associated with prevention of stress-induced cardiac systolic dysfunction. FASEB J 34:1–1

    Article  Google Scholar 

  86. Liu X, Zhang C, Zhang C, Li J, Guo W, Yan D, Yang C, Zhao J, Xia T, Wang Y, Xu R, Wu X, Shi J (2016) Heat shock protein 70 inhibits cardiomyocyte necroptosis through repressing autophagy in myocardial ischemia/reperfusion injury. Vitro Cell Dev Biol Anim 52(6):690–698

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by a grant from the Canadian Institutes for Health Research (FRN-74733) and the Molson Women's Heart Health Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elissavet Kardami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kardami, E., Koleini, N. (2022). The Role of FGF2 isoforms in Cell Survival in the Heart. In: Kirshenbaum, L.A. (eds) Biochemistry of Apoptosis and Autophagy. Advances in Biochemistry in Health and Disease, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-78799-8_15

Download citation

Publish with us

Policies and ethics