Skip to main content

Proteotoxicity and Autophagy in Neurodegenerative and Cardiovascular Diseases

  • Chapter
  • First Online:
Biochemistry of Apoptosis and Autophagy

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 18))

  • 882 Accesses

Abstract

Aberrant protein folding and subsequent aggregation play a central role in a broad range of diseases that can affect nearly every tissue and organ. In particular, protein aggregation has been implicated in several neurodegenerative and cardiovascular diseases, such as Alzheimer’s disease and cardiac amyloidosis, that are associated with significant morbidity and mortality. Increasing evidence highlights that misfolded protein oligomers exert significant proteotoxicity and result in cell death, serving as a main driver of disease pathogenesis. Autophagy is a natural, precisely regulated process responsible for the sequestration and clearance of misfolded proteins and damaged organelles to counteract the effects of proteotoxicity. Through a variety of mechanisms, autophagic pathways are often impaired in protein aggregation diseases. Moreover, augmenting autophagy has been demonstrated to ameliorate the end organ damage caused by protein aggregates. Therefore, understanding the interactions between protein aggregation and autophagy are crucial to treat proteotoxic neurodegenerative and cardiovascular diseases.

Kevin M. Alexander and Isabel Morgado contributed equally to the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Douglas PM, Summers DW, Cyr DM (2009) Molecular chaperones antagonize proteotoxicity by differentially modulating protein aggregation pathways. Prion 3(2):51–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(Suppl):S10–S17

    Article  PubMed  Google Scholar 

  3. Willis MS, Patterson C (2013) Proteotoxicity and cardiac dysfunction—Alzheimer’s disease of the heart? N Engl J Med 368(5):455–464

    Article  CAS  PubMed  Google Scholar 

  4. Mendes Sousa M et al (2001) Deposition of transthyretin in early stages of familial amyloidotic polyneuropathy. Am J Pathol 159(6):1993–2000

    Article  PubMed Central  Google Scholar 

  5. Ramirez-Alvarado M (2012) Amyloid formation in light chain amyloidosis. Curr Top Med Chem 12(22):2523–2533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pinney JH et al (2013) Senile systemic amyloidosis: clinical features at presentation and outcome. J Am Heart Assoc 2(2)

    Google Scholar 

  7. Sandri M, Robbins J (2014) Proteotoxicity: an underappreciated pathology in cardiac disease. J Mol Cell Cardiol 71:3–10

    Article  CAS  PubMed  Google Scholar 

  8. Thomas PK (1975) Genetic factors in amyloidosis. J Med Genet 12(4):317–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Spinney L (2014) Alzheimer’s disease: the forgetting gene. Nature 510(7503):26–28

    Article  CAS  PubMed  Google Scholar 

  10. Douglas PM, Dillin A (2010) Protein homeostasis and aging in neurodegeneration. J Cell Biol 190(5):719–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kayed R et al (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  CAS  PubMed  Google Scholar 

  12. Cleary JP et al (2005) Natural oligomers of the amyloid-B protein specifically disrupt cognitive function. Nat Neurosci 8:79–84

    Article  CAS  PubMed  Google Scholar 

  13. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid [β]-peptide. Nat Rev Mol Cell Bio 8(2):101–112

    Article  CAS  Google Scholar 

  14. Demuro A et al (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280(17):17294–17300

    Article  CAS  PubMed  Google Scholar 

  15. Zhao LN et al (2012) The toxicity of amyloid β oligomers. Int J Mol Sci 13(6):7303–7327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reixach N et al (2004) Tissue damage in the amyloidoses: transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc Natl Acad Sci USA 101(9):2817–2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sörgjerd K et al (2008) Prefibrillar transthyretin oligomers and cold stored native tetrameric transthyretin are cytotoxic in cell culture. Biochem Biophys Res Commun 377(4):1072–1078

    Article  PubMed  Google Scholar 

  18. Powers ET, Balch WE (2013) Diversity in the origins of proteostasis networks [mdash] a driver for protein function in evolution. Nat Rev Mol Cell Biol 14(4):237–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peterson FC et al (2010) A single mutation promotes amyloidogenicity through a highly promiscuous dimer interface. Structure 18(5):563–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22(11):1427–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hightower LE (1991) Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66(2):191–197

    Article  CAS  PubMed  Google Scholar 

  22. Kastle M, Grune T (2012) Interactions of the proteasomal system with chaperones: protein triage and protein quality control. Prog Mol Biol Transl Sci 109:113–160

    Article  PubMed  Google Scholar 

  23. Latonen L (2011) Nucleolar aggresomes as counterparts of cytoplasmic aggresomes in proteotoxic stress. Proteasome inhibitors induce nuclear ribonucleoprotein inclusions that accumulate several key factors of neurodegenerative diseases and cancer. Bioessays 33(5):386–395

    Google Scholar 

  24. He C, Klionsky DJ (2006) Autophagy and Neurodegeneration. ACS Chem Biol 1(4):211–213

    Article  CAS  PubMed  Google Scholar 

  25. Klein WL (2002) Abeta toxicity in Alzheimer’s disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem Int 41(5):345–352

    Article  CAS  PubMed  Google Scholar 

  26. Finder VH, Glockshuber R (2007) Amyloid-beta aggregation. Neurodegener Dis 4(1):13–27

    Article  CAS  PubMed  Google Scholar 

  27. Safar JG (2012) Molecular pathogenesis of sporadic prion diseases in man. Prion 6(2):108–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ebrahimi-Fakhari D, Wahlster L, McLean PJ (2012) Protein degradation pathways in Parkinson’s disease: curse or blessing. Acta Neuropathol 124(2):153–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gallo G et al (1996) Light chain cardiomyopathy. Structural analysis of the light chain tissue deposits. Am J Pathol 148(5):1397–1406

    Google Scholar 

  30. Ando Y et al (2013) Guideline of transthyretin-related hereditary amyloidosis for clinicians. Orphanet J Rare Dis 8(1):1–18

    Article  Google Scholar 

  31. Benson M (2009) Genetics: clinical implications of TTR amyloidosis. In: Richardson SJ, Cody V (eds) Recent advances in transthyretin evolution, structure and biological functions, Springer, Berlin

    Google Scholar 

  32. Garvey M, Morgado I (2013) Peptide concentration alters intermediate species in amyloid β fibrillation kinetics. Biochem Biophys Res Commun 433(3):276–280

    Article  CAS  PubMed  Google Scholar 

  33. Sunde M et al (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273(3):729–739

    Article  CAS  PubMed  Google Scholar 

  34. Lu J-X et al (2013) Molecular structure of β-amyloid fibrils in Alzheimer's disease brain tissue. Cell 154(6). https://doi.org/10.1016/j.cell.2013.08.035

  35. Fandrich M (2007) On the structural definition of amyloid fibrils and other polypeptide aggregates. Cell Mol Life Sci 64(16):2066–2078

    Article  CAS  PubMed  Google Scholar 

  36. Schmidt A et al (2016) Cryo-EM reveals the steric zipper structure of a light chain-derived amyloid fibril. Proc Natl Acad Sci

    Google Scholar 

  37. Serpell LC (2000) Alzheimer’s amyloid fibrils: structure and assembly. Biochimica et Biophysica Acta (BBA)—Mol Basis Dis 1502(1): 16–30

    Google Scholar 

  38. Fändrich M, Schmidt M, Grigorieff N (2011) Recent progress in understanding Alzheimer’s β-amyloid structures. Trends Biochem Sci 36(6):338–345

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nelson R, Eisenberg D (2006) Structural models of amyloid-like fibrils. Adv Protein Chem 73:235–282

    Article  CAS  PubMed  Google Scholar 

  40. Toyama BH, Weissman JS (2011) Amyloid structure: conformational diversity and consequences. Annu Rev Biochem 80:557–585

    Article  CAS  PubMed  Google Scholar 

  41. Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298

    Article  CAS  PubMed  Google Scholar 

  42. Lesne S et al (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440(7082):352–357

    Article  CAS  PubMed  Google Scholar 

  43. Shankar GM et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14(8):837–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bemporad F, Chiti F (2012) Protein misfolded oligomers: experimental approaches, mechanism of formation, and structure-toxicity relationships. Chem Biol 19(3):315–327

    Article  CAS  PubMed  Google Scholar 

  45. Kayed R et al (2009) Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J Biol Chem 284(7):4230–4237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. tBreydo L, Uversky VN (2015) Structural, morphological, and functional diversity of amyloid oligomers. FEBS Lett 589(19 Pt A):2640–2648

    Google Scholar 

  47. Scheidt HA et al (2011) Solid-state NMR spectroscopic investigation of Ab protofibrils: implication of a b-sheet remodeling upon maturation into terminal amyloid fibrils. Angew Chem Int Ed Engl 50(12):2837–2840

    Article  CAS  PubMed  Google Scholar 

  48. Lindgren M, Sörgjerd K, Hammarström P (2005) Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy. Biophys J 88(6):4200–4212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stefani M (2012) Structural features and cytotoxicity of amyloid oligomers: implications in Alzheimer’s disease and other diseases with amyloid deposits. Prog Neurobiol 99(3):226–245

    Article  CAS  PubMed  Google Scholar 

  50. Pham JD et al (2013) Structures of oligomers of a peptide from beta-amyloid. J Am Chem Soc 135(33):12460–12467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Morgado I et al (2012) Molecular basis of beta-amyloid oligomer recognition with a conformational antibody fragment. Proc Natl Acad Sci U S A 109(31):12503–12508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Haupt C et al (2011) Amyloid fibril recognition with the conformational B10 antibody fragment depends on electrostatic interactions. J Mol Biol 405(2):341–348

    Article  CAS  PubMed  Google Scholar 

  53. Paduch M et al (2013) Generating conformation-specific synthetic antibodies to trap proteins in selected functional states. Methods 60(1):3–14

    Article  CAS  PubMed  Google Scholar 

  54. O’Nuallain B et al (2011) A monoclonal antibody against synthetic Abeta dimer assemblies neutralizes brain-derived synaptic plasticity-disrupting Abeta. J Neurochem 119(1):189–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kreutzer AG et al (2016) X-ray crystallographic structures of a trimer, dodecamer, and annular pore formed by an Aβ17–36 β-hairpin. J Am Chem Soc 138(13):4634–4642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chiti F et al (2003) Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424(6950):805–808

    Article  CAS  PubMed  Google Scholar 

  57. Lashuel HA et al (2002) Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418(6895):291

    Article  CAS  PubMed  Google Scholar 

  58. Conway KA, Harper JD, Lansbury PT Jr (2000) Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 39(10):2552–2563

    Article  CAS  PubMed  Google Scholar 

  59. Janson J et al (1999) The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 48(3):491–498

    Article  CAS  PubMed  Google Scholar 

  60. Lashuel HA, Lansbury PT Jr (2006) Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Q Rev Biophys 39(2):167–201

    Article  CAS  PubMed  Google Scholar 

  61. Glabe CG, Kayed R (2006) Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology 66(2 Suppl 1):S74–S78

    Article  CAS  PubMed  Google Scholar 

  62. Bitan G et al (2003) Amyloid beta-protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc Natl Acad Sci U S A 100(1):330–335

    Article  CAS  PubMed  Google Scholar 

  63. Carulla N et al (2009) Experimental characterization of disordered and ordered aggregates populated during the process of amyloid fibril formation. Proc Natl Acad Sci 106(19):7828–7833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wei L et al (2011) The molecular basis of distinct aggregation pathways of islet amyloid polypeptide. J Biol Chem 286(8):6291–6300

    Article  CAS  PubMed  Google Scholar 

  65. Dusa A et al (2006) Characterization of oligomers during alpha-synuclein aggregation using intrinsic tryptophan fluorescence. Biochemistry 45(8):2752–2760

    Article  CAS  PubMed  Google Scholar 

  66. Plakoutsi G et al (2005) Evidence for a mechanism of amyloid formation involving molecular reorganisation within native-like precursor aggregates. J Mol Biol 351(4):910–922

    Article  CAS  PubMed  Google Scholar 

  67. Calamai M et al (2005) Reversal of protein aggregation provides evidence for multiple aggregated states. J Mol Biol 346(2):603–616

    Article  CAS  PubMed  Google Scholar 

  68. Kaylor J et al (2005) Characterization of oligomeric intermediates in alpha-synuclein fibrillation: FRET studies of Y125W/Y133F/Y136F alpha-synuclein. J Mol Biol 353(2):357–372

    Article  CAS  PubMed  Google Scholar 

  69. Alberdi E et al (2010) Amyloid β oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium 47(3):264–272

    Article  CAS  PubMed  Google Scholar 

  70. Hong S et al (2014) Soluble Aβ oligomers are rapidly sequestered from brain ISF in vivo and bind GM1 ganglioside on cellular membranes. Neuron 82(2):308–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Eisele YS et al (2015) Targeting protein aggregation for the treatment of degenerative diseases. Nat Rev Drug Discov 14(11):759–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tomaselli S et al (2006) The α-to-β conformational transition of Alzheimer’s Aβ-(1–42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of β conformation seeding. ChemBioChem 7(2):257–267

    Article  CAS  PubMed  Google Scholar 

  73. Vivekanandan S et al (2011) A partially folded structure of amyloid-beta(1–40) in an aqueous environment. Biochem Biophys Res Commun 411(2):312–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fezoui Y, Teplow DB (2002) Kinetic studies of amyloid β-protein fibril assembly: differential effects of α-helix stabilization. J Biol Chem 277(40):36948–36954

    Article  CAS  PubMed  Google Scholar 

  75. Morgado I, Fändrich M (2011) Assembly of Alzheimer’s Ab peptide into nanostructured amyloid fibrils. Curr Opin Colloid Interface Sci 16(6):508–514

    Article  CAS  Google Scholar 

  76. Morgado I, Garvey M (2015) Lipids in amyloid-beta processing, aggregation, and toxicity. Adv Exp Med Biol 855:67–94

    Article  CAS  PubMed  Google Scholar 

  77. Benseny-Cases N, Cocera M, Cladera J (2007) Conversion of non-fibrillar β-sheet oligomers into amyloid fibrils in Alzheimer’s disease amyloid peptide aggregation. Biochem Biophys Res Commun 361:916–921

    Article  CAS  PubMed  Google Scholar 

  78. Dahse K et al (2010) DHPC strongly affects the structure and oligomerization propensity of Alzheimer’s Aβ(1–40) peptide. J Mol Biol 403(4):643–659

    Article  CAS  PubMed  Google Scholar 

  79. Benseny-Cases N, Cocera M, Cladera J (2007) Conversion of non-fibrillar beta-sheet oligomers into amyloid fibrils in Alzheimer’s disease amyloid peptide aggregation. Biochem Biophys Res Commun 361:916–921

    Article  CAS  PubMed  Google Scholar 

  80. Walsh DM et al (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539

    Article  CAS  PubMed  Google Scholar 

  81. Walsh DM, Selkoe DJ (2004) Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett 11:213–228

    Article  CAS  PubMed  Google Scholar 

  82. McLaurin J, Chakrabartty A (1996) Membrane disruption by Alzheimer Î2-amyloid peptides mediated through specific binding to either phospholipids or gangliosides: Implications For Neurotoxicity. J Biol Chem 271(43):26482–26489

    Article  CAS  PubMed  Google Scholar 

  83. Murphy RM (2007) Kinetics of amyloid formation and membrane interaction with amyloidogenic proteins. Biochimica et Biophysica Acta (BBA)—Biomembranes 1768(8): 1923–1934

    Google Scholar 

  84. Relini A et al (2009) The two-fold aspect of the interplay of amyloidogenic proteins with lipid membranes. Chem Phys Lipid 158(1):1–9

    Article  CAS  Google Scholar 

  85. Prangkio P et al (2012) Multivariate analyses of amyloid-β oligomer populations indicate a connection between pore formation and cytotoxicity. PLoS ONE 7(10): e47261

    Google Scholar 

  86. Kawahara M et al (2011) Membrane incorporation, channel formation, and disruption of calcium homeostasis by Alzheimer’s β-Amyloid Protein. Int J Alzheimer’s Dis 17

    Google Scholar 

  87. Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4(1):49–60

    Article  CAS  PubMed  Google Scholar 

  88. Yip CM, McLaurin J (2001) Amyloid-β peptide assembly: a critical step in fibrillogenesis and membrane disruption. Biophys J 80(3):1359–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bokvist M et al (2004) Two Types of Alzheimer’s β-Amyloid (1–40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation. J Mol Biol 335(4):1039–1049

    Article  CAS  PubMed  Google Scholar 

  90. Colon W, Kelly JW (1992) Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 31(36):8654–8660

    Article  CAS  PubMed  Google Scholar 

  91. Hurle MR et al (1994) A role for destabilizing amino acid replacements in light-chain amyloidosis. Proc Natl Acad Sci U S A 91(12):5446–5450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Monaco HL, Rizzi M, Coda A (1995) Structure of a complex of two plasma proteins: transthyretin and retinol-binding protein. Science 268(5213):1039–1041

    Article  CAS  PubMed  Google Scholar 

  93. Saraiva MJ (1995) Transthyretin mutations in health and disease. Hum Mutat 5(3):191–196

    Article  CAS  PubMed  Google Scholar 

  94. Gonçalves NP, Teixeira-Coelho M, Saraiva MJ (2015) Protective role of anakinra against transthyretin-mediated axonal loss and cell death in a mouse model of familial amyloidotic polyneuropathy. J Neuropathol Exp Neurol 74(3):203–217

    Article  PubMed  Google Scholar 

  95. Andersson K et al (2002) Only amyloidogenic intermediates of transthyretin induce apoptosis. Biochem Biophys Res Commun 294(2):309–314

    Article  CAS  PubMed  Google Scholar 

  96. Pires RH et al (2012) Distinct annular oligomers captured along the assembly and disassembly pathways of transthyretin amyloid protofibrils. PLoS One 7(9): e44992

    Google Scholar 

  97. Demuro A, Smith M, Parker I (2011) Single-channel Ca(2+) imaging implicates Abeta1-42 amyloid pores in Alzheimer’s disease pathology. J Cell Biol 195(3):515–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Groenning M et al (2015) Considerably unfolded transthyretin monomers preceed and exchange with dynamically structured amyloid protofibrils. Sci Rep 5:11443

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kastritis E et al (2010) Bortezomib with or without dexamethasone in primary systemic (light chain) amyloidosis. J Clin Oncol 28(6):1031–1037

    Article  CAS  PubMed  Google Scholar 

  100. Schormann N et al (1995) Tertiary structure of an amyloid immunoglobulin light chain protein: a proposed model for amyloid fibril formation. Proc Natl Acad Sci U S A 92(21):9490–9494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Randles EG et al (2009) Structural alterations within native amyloidogenic immunoglobulin light chains. J Mol Biol 389(1):199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schormann N et al (1995) Tertiary structure of an amyloid immunoglobulin light chain protein: a proposed model for amyloid fibril formation. Proc Natl Acad Sci USA 92(21):9490–9494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chiti F et al (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci USA 96(7):3590–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ionescu-Zanetti C et al (1999) Monitoring the assembly of IG light-chain amyloid fibrils by atomic force microscopy. Proc Natl Acad Sci 96(23):13175–13179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Blake C, Serpell L (1996) Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous beta-sheet helix. Structure 4(8):989–998

    Article  CAS  PubMed  Google Scholar 

  106. Brenner DA et al (2004) Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ Res 94(8):1008–1010

    Article  CAS  PubMed  Google Scholar 

  107. Shi J et al (2010) Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38alpha MAPK pathway. Proc Natl Acad Sci U S A 107(9):4188–4193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Teng J et al (2004) Different types of glomerulopathic light chains interact with mesangial cells using a common receptor but exhibit different intracellular trafficking patterns. Lab Invest 84(4):440–451

    Article  CAS  PubMed  Google Scholar 

  109. Sikkink LA, Ramirez-Alvarado M (2010) Cytotoxicity of amyloidogenic immunoglobulin light chains in cell culture. Cell Death Dis 1(11): e98

    Google Scholar 

  110. Vinters HV (2015) Emerging concepts in Alzheimer’s disease. Annu Rev Pathol 10:291–319

    Article  CAS  PubMed  Google Scholar 

  111. Chakrabarti S et al (2013) Oxidative stress and amyloid beta toxicity in Alzheimer’s disease: intervention in a complex relationship by antioxidants. Curr Med Chem 20(37):4648–4664

    Article  CAS  PubMed  Google Scholar 

  112. Santos LE, Ferreira ST (2017) Crosstalk between endoplasmic reticulum stress and brain inflammation in Alzheimer's disease. Neuropharmacology

    Google Scholar 

  113. Zhang Y et al (2017) The role of ubiquitin proteasomal system and autophagy-lysosome pathway in Alzheimer’s disease. Rev Neurosci 28(8):861–868

    Article  CAS  PubMed  Google Scholar 

  114. Rogaev EI et al (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376(6543):775–778

    Article  CAS  PubMed  Google Scholar 

  115. Sherrington R et al (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375(6534):754–760

    Article  CAS  PubMed  Google Scholar 

  116. Goate A et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349(6311):704–706

    Article  CAS  PubMed  Google Scholar 

  117. Bentahir M et al (2006) Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms. J Neurochem 96(3):732–742

    Article  CAS  PubMed  Google Scholar 

  118. Citron M et al (1992) Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature 360(6405):672–674

    Article  CAS  PubMed  Google Scholar 

  119. Kumar-Singh S et al (2006) Mean age-of-onset of familial alzheimer disease caused by presenilin mutations correlates with both increased Abeta42 and decreased Abeta40. Hum Mutat 27(7):686–695

    Article  CAS  PubMed  Google Scholar 

  120. Ling D et al (2009) Abeta42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila. PLoS One 4(1):e4201

    Google Scholar 

  121. Esselens C et al (2004) Presenilin 1 mediates the turnover of telencephalin in hippocampal neurons via an autophagic degradative pathway. J Cell Biol 166(7):1041–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lee JH et al (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141(7):1146–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Beecham GW et al (2014) Genome-wide association meta-analysis of neuropathologic features of Alzheimer's disease and related dementias. PLoS Genet 10(9): e1004606

    Google Scholar 

  124. Naj AC et al (2014) Effects of multiple genetic loci on age at onset in late-onset Alzheimer disease: a genome-wide association study. JAMA Neurol 71(11):1394–1404

    Article  PubMed  PubMed Central  Google Scholar 

  125. Pickford F et al (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118(6):2190–2199

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Tebar F, Bohlander SK, Sorkin A (1999) Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. Mol Biol Cell 10(8):2687–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Moreau K et al (2014) PICALM modulates autophagy activity and tau accumulation. Nat Commun 5:4998

    Article  CAS  PubMed  Google Scholar 

  128. Salminen A et al (2013) Impaired autophagy and APP processing in Alzheimer’s disease: the potential role of Beclin 1 interactome. Prog Neurobiol 106–107:33–54

    Article  PubMed  Google Scholar 

  129. Park JM et al (2018) ULK1 phosphorylates Ser30 of BECN1 in association with ATG14 to stimulate autophagy induction. Autophagy 1–28

    Google Scholar 

  130. Rocchi A et al (2017) A Becn1 mutation mediates hyperactive autophagic sequestration of amyloid oligomers and improved cognition in Alzheimer's disease. PLoS Genet 13(8):e1006962

    Google Scholar 

  131. Wang BJ et al (2017) ErbB2 regulates autophagic flux to modulate the proteostasis of APP-CTFs in Alzheimer’s disease. Proc Natl Acad Sci U S A 114(15):E3129–E3138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chang D et al (2017) A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat Genet 49(10):1511–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kitada T et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608

    Article  CAS  PubMed  Google Scholar 

  134. Valente EM et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304(5674):1158–1160

    Article  CAS  PubMed  Google Scholar 

  135. Di Fonzo A et al (2009) FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 72(3):240–245

    Article  PubMed  Google Scholar 

  136. Cunningham CN et al (2015) USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat Cell Biol 17(2):160–169

    Article  CAS  PubMed  Google Scholar 

  137. Stolz A, Ernst A, Dikic I (2014) Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16(6):495–501

    Article  CAS  PubMed  Google Scholar 

  138. Narendra DP et al (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8(1):e1000298

    Google Scholar 

  139. Kane LA et al (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205(2):143–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chang YF et al (2006) The F-box protein Fbxo7 interacts with human inhibitor of apoptosis protein cIAP1 and promotes cIAP1 ubiquitination. Biochem Biophys Res Commun 342(4):1022–1026

    Article  CAS  PubMed  Google Scholar 

  141. Burchell VS et al (2013) The Parkinson’s disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat Neurosci 16(9):1257–1265

    Article  CAS  PubMed  Google Scholar 

  142. Zimprich A et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44(4):601–607

    Article  CAS  PubMed  Google Scholar 

  143. Beilina A et al (2014) Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease. Proc Natl Acad Sci U S A 111(7):2626–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Angeles DC et al (2011) Mutations in LRRK2 increase phosphorylation of peroxiredoxin 3 exacerbating oxidative stress-induced neuronal death. Hum Mutat 32(12):1390–1397

    Article  CAS  PubMed  Google Scholar 

  145. MacLeod D et al (2006) The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron 52(4):587–593

    Article  CAS  PubMed  Google Scholar 

  146. Ramonet D et al (2012) PARK9-associated ATP13A2 localizes to intracellular acidic vesicles and regulates cation homeostasis and neuronal integrity. Hum Mol Genet 21(8):1725–1743

    Article  CAS  PubMed  Google Scholar 

  147. Ramirez A et al (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38(10):1184–1191

    Article  CAS  PubMed  Google Scholar 

  148. Dehay B et al (2012) Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration. Proc Natl Acad Sci U S A 109(24):9611–9616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dandana A et al (2016) Gaucher disease: clinical, biological and therapeutic aspects. Pathobiology 83(1):13–23

    Article  PubMed  Google Scholar 

  150. Mazzulli JR et al (2011) Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146(1):37–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sardi SP et al (2017) Glucosylceramide synthase inhibition alleviates aberrations in synucleinopathy models. Proc Natl Acad Sci U S A 114(10):2699–2704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Liao R et al (2001) Infusion of light chains from patients with cardiac amyloidosis causes diastolic dysfunction in isolated mouse hearts. Circulation 104(14):1594–1597

    Article  CAS  PubMed  Google Scholar 

  153. Comenzo RL et al (1996) Dose-intensive melphalan with blood stem cell support for the treatment of AL amyloidosis: one-year follow-up in five patients. Blood 88(7):2801–2806

    Article  CAS  PubMed  Google Scholar 

  154. Dember LM et al (2001) Effect of dose-intensive intravenous melphalan and autologous blood stem-cell transplantation on al amyloidosis-associated renal disease. Ann Intern Med 134(9 Pt 1):746–753

    Article  CAS  PubMed  Google Scholar 

  155. Sanchorawala V et al (2005) Serum free light-chain responses after high-dose intravenous melphalan and autologous stem cell transplantation for AL (primary) amyloidosis. Bone Marrow Transplant 36(7):597–600

    Article  CAS  PubMed  Google Scholar 

  156. Migrino RQ et al (2010) Systemic and microvascular oxidative stress induced by light chain amyloidosis. Int J Cardiol 145(1):67–68

    Article  PubMed  Google Scholar 

  157. Migrino RQ et al (2011) Human microvascular dysfunction and apoptotic injury induced by AL amyloidosis light chain proteins. Am J Physiol Heart Circ Physiol 301(6):H2305–H2312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Dorbala S et al (2014) Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis. JACC Heart Fail 2(4):358–367

    Article  PubMed  PubMed Central  Google Scholar 

  159. Shin JT et al (2012) Overexpression of human amyloidogenic light chains causes heart failure in embryonic zebrafish: a preliminary report. Amyloid 19(4):191–196

    Article  CAS  PubMed  Google Scholar 

  160. Guan J et al (2013) Stanniocalcin1 is a key mediator of amyloidogenic light chain induced cardiotoxicity. Basic Res Cardiol 108(5):378

    Article  PubMed  PubMed Central  Google Scholar 

  161. Lavatelli F et al (2015) Novel mitochondrial protein interactors of immunoglobulin light chains causing heart amyloidosis. FASEB J 29(11):4614–4628

    Article  CAS  PubMed  Google Scholar 

  162. Levinson RT et al (2013) Role of mutations in the cellular internalization of amyloidogenic light chains into cardiomyocytes. Sci Rep 3:1278

    Article  PubMed  PubMed Central  Google Scholar 

  163. Scherz-Shouval R et al (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26(7):1749–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sciarretta S et al (2013) Activation of NADPH oxidase 4 in the endoplasmic reticulum promotes cardiomyocyte autophagy and survival during energy stress through the protein kinase RNA-activated-like endoplasmic reticulum kinase/eukaryotic initiation factor 2alpha/activating transcription factor 4 pathway. Circ Res 113(11):1253–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Song M et al (2014) Super-suppression of mitochondrial reactive oxygen species signaling impairs compensatory autophagy in primary mitophagic cardiomyopathy. Circ Res 115(3):348–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Guan J et al (2014) Lysosomal dysfunction and impaired autophagy underlie the pathogenesis of amyloidogenic light chain-mediated cardiotoxicity. EMBO Mol Med 6(11):1493–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Arbustini E et al (1998) Restrictive cardiomyopathy, atrioventricular block and mild to subclinical myopathy in patients with desmin-immunoreactive material deposits. J Am Coll Cardiol 31(3):645–653

    Article  CAS  PubMed  Google Scholar 

  168. Li D et al (1999) Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 100(5):461–464

    Article  CAS  PubMed  Google Scholar 

  169. Sanbe A et al (2009) Protective effect of geranylgeranylacetone via enhancement of HSPB8 induction in desmin-related cardiomyopathy. PLoS One 4(4):e5351

    Google Scholar 

  170. Bhuiyan MS et al (2013) Enhanced autophagy ameliorates cardiac proteinopathy. J Clin Invest 123(12):5284–5297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronglih Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alexander, K.M., Morgado, I., Liao, R. (2022). Proteotoxicity and Autophagy in Neurodegenerative and Cardiovascular Diseases. In: Kirshenbaum, L.A. (eds) Biochemistry of Apoptosis and Autophagy. Advances in Biochemistry in Health and Disease, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-78799-8_12

Download citation

Publish with us

Policies and ethics