Skip to main content

Bioinformatics Approaches for Parkinson’s Disease in Clinical Practice: Data-Driven Biomarkers and Pharmacological Treatment

  • Conference paper
  • First Online:
GeNeDis 2020

Abstract

Parkinson’s disease is a gradually progressive neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the midbrain area called the substantia nigra pars compacta and cytoplasmic alpha-synuclein-rich inclusions termed Lewy bodies. The etiology and pathogenesis remain incompletely understood. The development of reliable biomarkers for the early and accurate diagnosis, including biochemical, genetic, clinical, and neuroimaging markers, is crucial for unraveling the pathogenic processes of the disease as well as patients’ progress surveillance. High-throughput technologies and system biology methodologies can support the identification of potent molecular fingerprints together with the establishment of dynamic network biomarkers. Emphasis is given on multi-omics datasets and dysregulated pathways associated with differentially expressed transcripts, modified protein motifs, and altered metabolic profiles. Although there is no therapy that terminates the neurodegenerative process and dopamine replacement strategy with L-DOPA represents the most effective treatment, numerous therapeutic protocols such as dopamine receptor agonists, MAO-B inhibitors, and cholinesterase inhibitors represent candidate treatments providing at the same time valuable network-based approaches to drug repositioning. Computational methodologies and bioinformatics platforms for visualization, clustering, and validating of molecular and clinical datasets provide important insights into diagnostic processing and therapeutic pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalia L, Lang A (2015) Parkinson’s disease. Lancet 386:896–912

    Article  CAS  Google Scholar 

  2. Geschwind DH, Konopka G (2009) Neuroscience in the era of functional genomics and systems biology. Nature 461:908–915

    Article  CAS  Google Scholar 

  3. McDermott JE, Archuleta M, Stevens SL, Stenzel-Poore MP, Sanfilippo A (2011) Defining the players in higher-order networks: predictive modeling for reverse engineering functional influence networks. Pac Symp Biocomput 2011:314–325

    Google Scholar 

  4. Galvan A, Devergnas A, Wichmann T (2015) Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state. Front Neuroanat 9:5

    Article  Google Scholar 

  5. Miller D, O’Callaghan J (2015) Biomarkers of Parkinson’s disease: present and future. Metabolism 64:S40–S46

    Article  CAS  Google Scholar 

  6. Ferrer I, Lopez-Gonzalez I, Carmona M, Dalfó E, Pujol A, Martínez A (2012) Neurochemistry and the non-motor aspects of PD. Neurobiol Dis 46:508–526

    Article  CAS  Google Scholar 

  7. McKeith I (2004) Dementia with Lewy bodies. Dialogues Clin Neurosci 3:333–341

    Article  Google Scholar 

  8. Wang Q, Zhang Y, Wang M, Song W-M, Shen Q, McKenzie A, Choi I, Zhou X, Pan P-Y, Yue Z (2019) The landscape of multiscale transcriptomic networks and key regulators in Parkinson’s disease. Nat Commun 10:5234

    Article  Google Scholar 

  9. Yang Q, She H, Gearing M, Colla E, Lee M, Shacka JJ, Mao Z (2009) Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science 323:124–127

    Article  CAS  Google Scholar 

  10. Musgrove RE, Helwig M, Bae EJ, Aboutalebi H, Lee SJ, Ulusoy A, Di Monte DA (2019) Oxidative stress in vagal neurons promotes parkinsonian pathology and intercellular α-synuclein transfer. J Clin Invest 130:3738–3753

    Article  Google Scholar 

  11. Scherzer CR (2009) Chipping away at diagnostics for neurodegenerative diseases. Neurobiol Dis 35:148–156

    Article  CAS  Google Scholar 

  12. Lottaz C, Toedling J, Spang R (2007) Annotation-based distance measures for patient subgroup discovery in clinical microarray studies. Bioinformatics 23:2256–2264

    Article  CAS  Google Scholar 

  13. Diao H, Li X, Hu S, Liu Y (2012) Gene expression profiling combined with bioinformatics analysis identify biomarkers for Parkinson disease. PLoS One 7:e52319

    Article  CAS  Google Scholar 

  14. Xu C, Chen J, Xu X, Zhang Y, Li J (2018) Potential therapeutic drugs for Parkinson’s disease based on data mining and bioinformatics analysis. Parkinsons Dis 2018:3464578

    PubMed  PubMed Central  Google Scholar 

  15. Harraz M, Dawson T, Dawson V (2011) MicroRNAs in Parkinson’s disease. J Chem Neuroanat 42:127–130

    Article  CAS  Google Scholar 

  16. Chi J, Xie Q, Jia J, Sun J, Deng Y, Yi L (2018) Integrated analysis and identification of novel biomarkers in Parkinson’s disease. Front Aging Neurosci 10:178

    Article  Google Scholar 

  17. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317:1220–1224

    Article  CAS  Google Scholar 

  18. Wang G, van der Walt JM, Mayhew G, Li YJ, Züchner S, Scott WK, Martin ER, Vance JM (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82:283–289

    Article  CAS  Google Scholar 

  19. Dong N, Zhang X, Liu Q (2017) Identification of therapeutic targets for Parkinson’s disease via bioinformatics analysis. Mol Med Rep 15:731–735

    Article  CAS  Google Scholar 

  20. Krokidis M (2019) Identification of biomarkers associated with Parkinson’s disease by gene expression profiling studies and bioinformatics analysis. AIMS Neurosci 6:333–345

    Google Scholar 

  21. Szargel R, Shani V, Abd Elghani F, Mekies LN, Liani E, Rott R, Engelender S (2016) The PINK1, synphilin-1 and SIAH-1 complex constitutes a novel mitophagy pathway. Hum Mol Genet 25:3476–3490

    Article  CAS  Google Scholar 

  22. Surmeier DJ, Guzman JN, Sanchez-Padilla J, Goldberg JA (2010) What causes the death of dopaminergic neurons in Parkinson’s disease? Prog Brain Res 183:59–77

    Article  CAS  Google Scholar 

  23. Jha SK, Jha NK, Kar R, Ambasta RK, Kumar P (2015) p38 MAPK and PI3K/AKT signalling cascades in Parkinson’s disease. Int J Mol Cell Med 4:67–86

    PubMed  PubMed Central  Google Scholar 

  24. Venderova K, Park DS (2012) Programmed cell death in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009365

    Article  Google Scholar 

  25. Cheng H-C, Ulane C, Burke R (2010) Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol 67:715–772

    Article  Google Scholar 

  26. Koeglsperger T, Palleis C, Hell F, Mehrkens JH, Bötzel K (2019) Deep brain stimulation programming for movement disorders: current concepts and evidence-based strategies. Front Neurol 10:410

    Article  Google Scholar 

  27. Marsili L, Marconi R, Colosimo C (2017) Treatment strategies in early Parkinson’s disease. Int Rev Neurobiol 132:345–360

    Article  CAS  Google Scholar 

  28. Magyar K, Stocchi F, Fossati C (2015) Rasagiline for the treatment of Parkinson’s disease: an update. Expert Opin Pharmacother 16:2231–2241

    Article  Google Scholar 

  29. Grall-Bronnec M, Victorri-Vigneau C, Donnio Y, Leboucher J, Rousselet M, Thiabaud E, Zreika N, Derkinderen P, Challet-Bouju G (2018) Dopamine agonists and impulse control disorders: a complex association. Drug Saf 41:19–75

    Article  CAS  Google Scholar 

  30. Benussi L, Binetti G, Ghidoni R (2017) Loss of neuroprotective factors in neurodegenerative dementias: the end or the starting point? Front Neurosci 11:672

    Article  Google Scholar 

  31. Palfi S, Gurruchaga JM, Lepetit H, Howard K, Ralph GS, Mason S, Gouello G, Domenech P, Buttery PC, Hantraye P, Tuckwell NJ, Barker RA, Mitrophanous KA (2018) Long-term follow-up of a phase I/II study of ProSavin, a lentiviral vector gene therapy for Parkinson’s disease. Hum Gene Ther Clin Dev 29:148–155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code: T1EDK-05029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marios G. Krokidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krokidis, M.G., Exarchos, T., Vlamos, P. (2021). Bioinformatics Approaches for Parkinson’s Disease in Clinical Practice: Data-Driven Biomarkers and Pharmacological Treatment. In: Vlamos, P. (eds) GeNeDis 2020. Advances in Experimental Medicine and Biology, vol 1338. Springer, Cham. https://doi.org/10.1007/978-3-030-78775-2_23

Download citation

Publish with us

Policies and ethics