Skip to main content

Adiponectin and Its Effects on Acute Leukemia Cells: An Experimental and Bioinformatics Approach

  • Conference paper
  • First Online:
GeNeDis 2020

Abstract

Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. It is known that deregulation of adipokine pathways is probably implicated in the ontogenesis of ALL. The present work aims at investigating the role of adiponectin and its effects on an ALL cell line. The CCRF-CEM cells were used as a model. Cells have been treated with adiponectin, with different concentrations up to 72 h. Cytotoxicity and cell cycle distribution were investigated for all concentrations using flow cytometry. Selected concentrations were also used for additional microarray analysis, using a small gene set of cancer-related genes. Lower and higher adiponectin concentrations did not produce an inhibition of proliferation, as well as an increase in cell death. It was found that adiponectin regulated differentially genes, such as CD22, CDH1, IFNG, LCK, MSH2, SPINT2, and others. At the same time, it appeared that adiponectin-related gene expression was more active on chromosomes 18 and 1. Machine learning classification algorithms showed that several genes were grouped together indicating common regulatory mechanisms. The present study showed that adiponectin is able to induce gene differential expression in leukemic cells in vitro, suggesting a possible role in the progression of leukemia. It is also an indication that more studies are required in order to further understand the role of adiponectin and adipokines in general in the role of human neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.pubgene.org

  2. 2.

    http://www.ncbi.nlm.nih.gov/sites/entrez/

References

  1. Scherer PE et al (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270(45):26746–26749

    Article  CAS  Google Scholar 

  2. Savino F et al (2008) Adiponectin: an intriguing hormone for paediatricians. Acta Paediatr 97(6):701–705. https://doi.org/10.1111/j.1651-2227.2008.00750.x

    Article  CAS  PubMed  Google Scholar 

  3. Arita Y et al (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257(1):79–83

    Article  CAS  Google Scholar 

  4. Simpson F, Whitehead JP (2010) Adiponectin—it’s all about the modifications. Int J Biochem Cell Biol 42(6):785–788

    Article  CAS  Google Scholar 

  5. Nakano Y et al (1996) Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J Biochem 120(4):803–812

    Article  CAS  Google Scholar 

  6. Iliodromiti S et al (2016) Accuracy of circulating adiponectin for predicting gestational diabetes: a systematic review and meta-analysis. Diabetologia 59(4):692–699. https://doi.org/10.1007/s00125-015-3855-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yamauchi T et al (2014) Adiponectin receptors: a review of their structure, function and how they work. Best Pract Res Clin Endocrinol Metab 28(1):15–23. https://doi.org/10.1016/j.beern.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  8. Fang Y-L et al (2018) Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: from “two hit theory” to “multiple hit model”. World J Gastroenterol 24(27):2974

    Article  CAS  Google Scholar 

  9. Kotani Y et al (2004) Plasma adiponectin levels in newborns are higher than those in adults and positively correlated with birth weight. Clin Endocrinol 61(4):418–423. https://doi.org/10.1111/j.1365-2265.2004.02041.x

    Article  CAS  Google Scholar 

  10. Reitman ML et al (2001) Leptin and its role in pregnancy and fetal development – an overview. Biochem Soc Trans 29(Pt 2):68–72

    Article  CAS  Google Scholar 

  11. Simpson J et al (2016) Programming of adiposity in childhood and adolescence: associations with birth weight and cord blood adipokines. J Clin Endocrinol Metabol 102(2):499–506

    Google Scholar 

  12. Oshima K et al (2005) Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun 331(2):520–526. https://doi.org/10.1016/j.bbrc.2005.03.210

    Article  CAS  PubMed  Google Scholar 

  13. Derdemezis CS et al (2011) Obesity, adipose tissue and rheumatoid arthritis: coincidence or more complex relationship? Clin Exp Rheumatol 29(4):712–727

    CAS  PubMed  Google Scholar 

  14. Adamaki M et al (2013) Implication of IRF4 aberrant gene expression in the acute leukemias of childhood. PLoS One 8(8):e72326. https://doi.org/10.1371/journal.pone.0072326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adamaki M et al (2015) HOXA9 and MEIS1 gene overexpression in the diagnosis of childhood acute leukemias: significant correlation with relapse and overall survival. Leuk Res 39(8):874–882. https://doi.org/10.1016/j.leukres.2015.04.012

    Article  CAS  PubMed  Google Scholar 

  16. Adamaki M et al (2017) Aberrant AML1 gene expression in the diagnosis of childhood leukemias not characterized by AML1-involved cytogenetic abnormalities. Tumour Biol 39(3):1010428317694308. https://doi.org/10.1177/1010428317694308

    Article  CAS  PubMed  Google Scholar 

  17. Argyrou C et al (2019) The role of adiponectin, LEPTIN, and ghrelin in the progress and prognosis of childhood acute lymphoblastic leukemia. Leuk Lymphoma 60(9):2158–2169. https://doi.org/10.1080/10428194.2019.1569230

    Article  CAS  PubMed  Google Scholar 

  18. Barbosa-Cortés L et al (2017) Adipokines, insulin resistance, and adiposity as a predictors of metabolic syndrome in child survivors of lymphoma and acute lymphoblastic leukemia of a developing country. BMC Cancer 17(1):125. https://doi.org/10.1186/s12885-017-3097-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lambrou GI et al (2009) Prednisolone exerts late mitogenic and biphasic effects on resistant acute lymphoblastic leukemia cells: relation to early gene expression. Leuk Res 33(12):1684–1695

    Article  CAS  Google Scholar 

  20. Sifakis EG et al (2011) Elucidating the identity of resistance mechanisms to prednisolone exposure in acute lymphoblastic leukemia cells through transcriptomic analysis: a computational approach. J Clin Bioinform 1:36. https://doi.org/10.1186/2043-9113-1-36

    Article  CAS  Google Scholar 

  21. Kiguchi T et al (2001) Induction of urokinase-type plasminogen activator by the anthracycline antibiotic in human RC-K8 lymphoma and H69 lung-carcinoma cells. Int J Cancer 93(6):792–797

    Article  CAS  Google Scholar 

  22. Miyazato A et al (2001) Identification of myelodysplastic syndrome-specific genes by DNA microarray analysis with purified hematopoietic stem cell fraction. Blood 98(2):422–427

    Article  CAS  Google Scholar 

  23. Zhang D et al (2006) Multiplicative background correction for spotted microarrays to improve reproducibility. Genet Res 87(3):195–206

    Article  CAS  Google Scholar 

  24. Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74(Dec.):829–836

    Article  Google Scholar 

  25. Yang IV et al (2002) Within the fold: assessing differential expression measures and reproducibility in microarray assays. Genome Biol 3(11):research0062

    PubMed  PubMed Central  Google Scholar 

  26. Klipper-Aurbach Y et al (1995) Mathematical formulae for the prediction of the residual beta cell function during the first two years of disease in children and adolescents with insulin-dependent diabetes mellitus. Med Hypotheses 5:486–490

    Article  Google Scholar 

  27. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100(16):9440–9445

    Article  CAS  Google Scholar 

  28. Storey JD, Tibshirani R (2003) Statistical methods for identifying differentially expressed genes in DNA microarrays. Methods Mol Biol (Clifton, NJ) 224:149–157

    CAS  Google Scholar 

  29. Forgy EW (1965) Cluster analysis of multivariate data: efficiency vs interpretability of classifications, 1965. Biometrics 21:768769

    Google Scholar 

  30. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137

    Article  Google Scholar 

  31. Freyhult E et al (2010) Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering. BMC Bioinformatics 11:503. https://doi.org/10.1186/1471-2105-11-503

    Article  PubMed  PubMed Central  Google Scholar 

  32. Raudvere U et al (2019) g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47(W1):W191–w198. https://doi.org/10.1093/nar/gkz369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang B et al (2004) GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies. BMC Bioinformatics 5:16

    Article  Google Scholar 

  34. Zhang R et al (2019) Effects of medium chain triglycerides on body fat distribution and adipocytokine levels in children with acute lymphoblastic leukemia under chemotherapy. Medicine 98(33):e16811. https://doi.org/10.1097/md.0000000000016811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma JJ et al (2016) Serum adiponectin levels are inversely correlated with leukemia: a meta-analysis. J Cancer Res Ther 12(2):897–902. https://doi.org/10.4103/0973-1482.186695

    Article  CAS  PubMed  Google Scholar 

  36. Tzanavari T et al (2019) The role of adipokines in the establishment and progression of head and neck neoplasms. Curr Med Chem 26(25):4726–4748. https://doi.org/10.2174/0929867325666180713154505

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lambrou G .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsartsalis, A.N., Tagka, A., Kotoulas, A., Mirkopoulou, D., Geronikolou, S.A., G, L. (2021). Adiponectin and Its Effects on Acute Leukemia Cells: An Experimental and Bioinformatics Approach. In: Vlamos, P. (eds) GeNeDis 2020. Advances in Experimental Medicine and Biology, vol 1338. Springer, Cham. https://doi.org/10.1007/978-3-030-78775-2_14

Download citation

Publish with us

Policies and ethics