Skip to main content

Hierarchy of Models of Quasi-stationary Electromagnetic Fields

  • Conference paper
  • First Online:
Mathematical Modeling and Supercomputer Technologies (MMST 2020)

Abstract

The hierarchy of quasi-stationary models for the system of Maxwell’s equations in homogeneous and inhomogeneous media is studied. The non-relativistic magnetic approximation, the non-relativistic electric approximations and the generalizing quasi-stationary approximation, in which the displacement current contains only a component corresponding to the potential part of the electric field, are considered. The relationship between solutions of initial-boundary value problems for the system of Maxwell’s equations in various approximations is established and estimates of the proximity of these solutions are given. The obtained results show that the generalizing quasi-stationary approximation considered in this work has the same accuracy as the non-relativistic magnetic approximation in determining the magnetic field and the transverse component of the electric field and allows more accurate determination of the potential component of the electric field and the volume density of charges. The resulting generalized quasi-stationary approximation thus covers both classical non-relativistic approximations and can be used in modeling electromagnetic processes in substantially inhomogeneous media, in particular, in solving problems of atmospheric electricity.

Supported by the Scientific and Education Mathematical Center “Mathematics for Future Technologies” (Project No. 075-02-2020-1483/1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Course of Theoretical Physics, vol. 8. Pergamon Press, Oxford (1984)

    Google Scholar 

  2. Tolmachev, V.V., Golovin, A.M., Potapov, V.S.: Thermodynamics and electrodynamics of continuous media. Mosk. Gos. Univ, Moscow (1988)

    Google Scholar 

  3. Ammari, H., Buffa, A., Nedelec, J.-C.: A justification of eddy currents model for the Maxwell equations. SIAM J. Appl. Math. 60(5), 1805–1823 (2000)

    Article  MathSciNet  Google Scholar 

  4. Rodriguez, A.A., Valli, A.: Eddy Current Approximation of Maxwell Equations: Theory, Algorithms and Applications. Springer, Milan (2010). https://doi.org/10.1007/978-88-470-1506-7

    Book  MATH  Google Scholar 

  5. Galanin, M.P., Popov, Yu.P.: Quasi-stationary electromagnetic fields in inhomogeneous media: mathematical modeling. Fizmatlit, Moscow (1995)

    Google Scholar 

  6. Kolmbauer, M.: Existence and uniqueness of eddy current problems in bounded and unbounded domains. Numa-report 2011-03. Institute of Computational Mathematics, Linz (2011)

    Google Scholar 

  7. Kalinin, A.V., Sumin, M.I., Tyukhtina, A.A.: Stable sequential Lagrange principles in the inverse final observation problem for the system of Maxwell equations in the quasistationary magnetic approximation. Differ. Equ. 52(5), 587–603 (2016). https://doi.org/10.1134/S0012266116050062

    Article  MathSciNet  MATH  Google Scholar 

  8. Kalinin, A.V., Tyukhtina, A.A.: Quasistationary electromagnetic fields in inhomogeneous media with non-conductive and low conductive inclusions. Zhurnal SVMO 4(18), 119–133 (2016)

    Google Scholar 

  9. Kalinin, A.V., Sumin, M.I., Tyukhtina, A.A.: On the inverse problems of final observation for the system of Maxwell equations in the quasistationary magnetic approximation and stable sequential Lagrange principles of its solution. Comput. Math. Math. Phys. 2(57), 189–210 (2017)

    Article  Google Scholar 

  10. Kalinin, A.V., Tyukhtina, A.A.: \(L_p\)-estimates for scalar products of vector fields and their application to electromagnetic theory problems. Math. Methods Appl. Sci. 41(18), 9283–9292 (2018)

    Article  MathSciNet  Google Scholar 

  11. Mareev, E.A.: Global electric circuit research: achievement and prospects. Phys. Usp. 5(53), 504–511 (2010)

    Article  Google Scholar 

  12. Kalinin, A.V., Slyunyaev, N.N., Mareev, E.A., Zhidkov, A.A.: Stationary and nonstationary models of the global electric circuit: well-posedness, analytical relations, and numerical implementation. Izv. Atmos. Ocean. Phys. 3(50), 314–322 (2014). https://doi.org/10.1134/S0001433814030074

    Article  Google Scholar 

  13. Kalinin, A.V., Slyunyaev, N.N.: Initial-boundary value problems for the equations of the global atmospheric electric circuit. J. Math. Anal. Appl. 450(1), 112–136 (2017)

    Article  MathSciNet  Google Scholar 

  14. Boström, R., Fahleson, U.: Vertical propagation of time-dependent electric fields in the atmosphere and ionosphere. In: Dolezalek, H., Reiter, R. (eds.) Electrical Processes in Atmospheres, pp. 529–535. Steinkopff (1977)

    Google Scholar 

  15. Raviart, P.-A., Sonnendrücker, E.: A hierarchy of approximate models for the Maxwell equations. Numer. Math. 73, 329–372 (1996). https://doi.org/10.1007/s002110050196

    Article  MathSciNet  MATH  Google Scholar 

  16. Larsson, J.: Electromagnetics from a quasistatic perspective. Am. J. Phys. 75(3), 230–239 (2007)

    Article  Google Scholar 

  17. Weitzner, H., Lawson, W.S.: Boundary conditions for the Darwin model. Phys. Fluids B 1, 1953–1957 (1989)

    Article  MathSciNet  Google Scholar 

  18. Degond, P., Raviart, P.-A.: An analysis of the Darwin model of approximation to Maxwell’s equations. Forum Math. 4, 13–44 (1992)

    Article  MathSciNet  Google Scholar 

  19. Raviart, P.-A., Sonnendrücker, E.: Approximate models for the Maxwell equations. J. Comput. Appl. Math. 63, 69–81 (1994)

    Article  MathSciNet  Google Scholar 

  20. Girault, V., Raviart, P.: Finite Element Methods for Navier-Stokes Equations. Springler, Heidelberg (1986). https://doi.org/10.1007/978-3-642-61623-5

    Book  MATH  Google Scholar 

  21. Kalinin, A.V., Tyukhtina, A.A.: Darwin approximation for the system of Maxwell’s equations in inhomogeneous conducting media. Comput. Math. Math. Phys. 8(60), 1361–1374 (2020). https://doi.org/10.1134/S0965542520080102

    Article  MathSciNet  MATH  Google Scholar 

  22. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Heidelberg (1976). https://doi.org/10.1007/978-3-642-66165-5

    Book  MATH  Google Scholar 

  23. Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-58090-1

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalinin, A., Tyukhtina, A. (2021). Hierarchy of Models of Quasi-stationary Electromagnetic Fields. In: Balandin, D., Barkalov, K., Gergel, V., Meyerov, I. (eds) Mathematical Modeling and Supercomputer Technologies. MMST 2020. Communications in Computer and Information Science, vol 1413. Springer, Cham. https://doi.org/10.1007/978-3-030-78759-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78759-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78758-5

  • Online ISBN: 978-3-030-78759-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics