Skip to main content

Quiescence-to-Oscillations Transition Features in Dynamics of Spontaneous Astrocytic Calcium Concentration

  • Conference paper
  • First Online:
Book cover Mathematical Modeling and Supercomputer Technologies (MMST 2020)

Abstract

Recent experimental data show that neural network dynamics significantly depends on the properties of an active nonlinear environment in the brain. Chemical activity of astrocytes is one of the main factor modifying the excitability of the neuronal membrane and regulating the efficiency of signal transmission between neurons. It is known that astrocytes can demonstrate both spontaneous changes in calcium concentration and calcium signals caused by neuronal activity. We focus on spontaneous calcium concentration dynamics in astrocytes. Nonlinear differential equations describing molecular t between neuronsransport in the astrocytes are investigated. Particularly, within the frame of Lavrentovich-Hemkin mathematical model for calcium dynamics, the bifurcation mechanisms of spontaneous calcium concentration change are determined. We show that both soft (emergence of small-amplitude oscillations via supercritical Andronov-Hopf bifurcation) and hard (instantaneous emergence of large-amplitude oscillations via fold limit cycle bifurcation) ways for oscillations emergence can be realized in the astrocyte dynamics.

This work was supported by grant of the President of the Russian Federation for state support of leading scientific schools No. NSh-2653.2020.2. SG work was supported by the RFBR grants No. 20-32-70081, 18-29-10068 and the grant of the Ministry of Science and Higher Education of the Russian Federation project No. 0729-2020-0061.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, J., Binzegger, T., Kahana, O., Martin, K., Segev, I.: Dendritic asymmetry cannot account for directional responses of neurons in visual cortex. Nat. Neurosci. 2, 820–824 (1999)

    Article  Google Scholar 

  2. Gasparini, S., Migliore, M., Magee, J.C.: On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J. Neurosci. 24, 11046–11056 (2004)

    Article  Google Scholar 

  3. Pankratova, E.V., Belykh, V.N., Mosekilde, E.: Role of the driving frequency in a randomly perturbed Hodgkin-Huxley neuron with suprathreshold forcing. Eur. Phys. J. B 53, 529–536 (2006)

    Article  Google Scholar 

  4. Sardi, S., Vardi, R., Sheinin, A., Goldental, A., Kanter, I.: New types of experiments reveal that a neuron functions as multiple independent threshold units. Sci. Rep. 7, 18036 (2017)

    Article  Google Scholar 

  5. Belykh, V.N., Pankratova, E.V.: Chaotic synchronization in ensembles of coupled neurons modeled by the FitzHugh-Rinzel system. Radiophys. Quantum Electron. 49(11), 910–921 (2006). https://doi.org/10.1007/s11141-006-0124-z

    Article  Google Scholar 

  6. Eytan, D., Marom, S.: Dynamics and effective topology underlying synchronization in networks of cortical neurons. J. Neurosci. 26(33), 8465–8476 (2006)

    Article  Google Scholar 

  7. Belykh, V.N., Pankratova, E.V.: Synchronization and control in ensembles of periodic and chaotic neuronal elements with time dependent coupling. IFAC Proc. Vol. 40(14), 120–125 (2007)

    Article  Google Scholar 

  8. Larkum, M.E., Nevian, T.: Synaptic clustering by dendritic signalling mechanisms. Curr. Opin. Neurobiol. 18, 321–331 (2008)

    Article  Google Scholar 

  9. Belykh, V.N., Pankratova, E.V., Mosekilde, E.: Dynamics and synchronization of noise perturbed ensembles of periodically activated neuron cells. Int. J. Bifurcat. Chaos 18(9), 2807–2815 (2008)

    Article  MathSciNet  Google Scholar 

  10. Pankratova, E.V., Kalyakulina, A.I.: Environmentally induced amplitude death and firing provocation in large-scale networks of neuronal systems. Regul. Chaot. Dyn. 21(7–8), 840–848 (2016). https://doi.org/10.1134/S1560354716070078

    Article  MathSciNet  MATH  Google Scholar 

  11. Wu, Y.W., Gordleeva, S., Tang, X., Shih, P.Y., Dembitskaya, Y., Semyanov, A.: Morphological profile determines the frequency of spontaneous calcium events in astrocytic processes. Glia 67(2), 246–262 (2018)

    Article  Google Scholar 

  12. Gordleeva, S.Y., Ermolaeva, A.V., Kastalskiy, I.A., Kazantsev, V.B.: Astrocyte as spatiotemporal integrating detector of neuronal activity. Front. Physiol. 10, 294 (2019)

    Article  Google Scholar 

  13. Gordleeva, S.Y., Lebedev, S.A., Rumyantseva, M.A., Kazantsev, V.B.: Astrocyte as a detector of synchronous events of a neural network. JETP Lett. 107, 440–445 (2018). https://doi.org/10.1134/S0021364018070032

    Article  Google Scholar 

  14. Pankratova, E.V., Kalyakulina, A.I., Stasenko, S.V., Gordleeva, S.Y., Lazarevich, I.A., Kazantsev, V.B.: Neuronal synchronization enhanced by neuron-astrocyte interaction. Nonlinear Dyn. 97(1), 647–662 (2019). https://doi.org/10.1007/s11071-019-05004-7

    Article  Google Scholar 

  15. Makovkin, S.Y., Shkerin, I.V., Gordleeva, S.Y., Ivanchenko, M.V.: Astrocyte-induced intermittent synchronization of neurons in a minimal network. Chaos, Solitons Fractals 138, 109951 (2020)

    Article  MathSciNet  Google Scholar 

  16. Kanakov, O., Gordleeva, S., Ermolaeva, A., Jalan, S., Zaikin, A.: Astrocyte-induced positive integrated information in neuron-astrocyte ensembles. Phys. Rev. E 99, 012418 (2019)

    Article  Google Scholar 

  17. Abrego, L., Gordleeva, S., Kanakov, O.I., Krivonosov, M., Zaikin, A.A.: Estimating integrated information in bidirectional neuron-astrocyte communication. Phys. Rev. E 103, 002400 (2021)

    Article  MathSciNet  Google Scholar 

  18. Gordleeva, S.Y., Stasenko, S.V., Semyanov, A.V., Dityatev, A.E., Kazantsev, V.B.: Bi-directional astrocytic regulation of neuronal activity within a network. Front. Comput. Neurosci. 6(92), 1–11 (2012)

    Google Scholar 

  19. Lavrentovich, M., Hemkin, S.: A mathematical model of spontaneous calcium (II) oscillations in astrocytes. J. Theor. Biol. 251, 553–560 (2008)

    Article  MathSciNet  Google Scholar 

  20. Sinitsina, M.S., Gordleeva, S.Y., Kazantsev, V.B., Pankratova, E.V.: Calcium concentration in astrocytes: emergence of complicated spontaneous oscillations and their cessation. Izvestiya VUZ, Appl. Nonlinear Dyn. 29(3), 440–448 (2021). https://doi.org/10.18500/0869-6632-2021-29-3-440-448

  21. Sinitsina, M.S., Gordleeva, S.Yu., Kazantsev, V.B., Pankratova, E.V.: Emergence of complicated regular and irregular spontaneous Ca\(^{2+}\) oscillations in astrocytes. In: 4th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR), Innopolis, Russia, pp. 217–220 (2020)

    Google Scholar 

  22. Santello, M., Toni, N., Volterra, A.: Astrocyte function from information processing to cognition and cognitive impairment. Nat. Neurosci. 22, 154–166 (2019)

    Article  Google Scholar 

  23. Whitwell, H.J., et al.: The human body as a super network: digital methods to analyze the propagation of aging. Front. Aging Neurosci. 12, 136 (2020)

    Article  Google Scholar 

  24. Gordleeva, S., Kanakov, O., Ivanchenko, M., Zaikin, A., Franceschi, C.: Brain aging and garbage cleaning. Semin. Immunopathol. 42(5), 647–665 (2020). https://doi.org/10.1007/s00281-020-00816-x

    Article  Google Scholar 

  25. Gordleeva, S., et al.: Modelling working memory in spiking neuron network accompanied by astrocytes. Front. Cell Neurosci. 15, 631485 (2021). https://doi.org/10.3389/fncel.2021.631485

  26. Matrosov, Valeri., Gordleeva, Susan., Boldyreva, Natalia., Ben-Jacob, Eshel., Kazantsev, Victor, De Pittà, Maurizio: Emergence of Regular and Complex Calcium Oscillations by Inositol 1,4,5-Trisphosphate Signaling in Astrocytes. In: De Pittà, Maurizio, Berry, Hugues (eds.) Computational Glioscience. SSCN, pp. 151–176. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-00817-8_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria S. Sinitsina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sinitsina, M.S., Gordleeva, S.Y., Kazantsev, V.B., Pankratova, E.V. (2021). Quiescence-to-Oscillations Transition Features in Dynamics of Spontaneous Astrocytic Calcium Concentration. In: Balandin, D., Barkalov, K., Gergel, V., Meyerov, I. (eds) Mathematical Modeling and Supercomputer Technologies. MMST 2020. Communications in Computer and Information Science, vol 1413. Springer, Cham. https://doi.org/10.1007/978-3-030-78759-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78759-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78758-5

  • Online ISBN: 978-3-030-78759-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics