Skip to main content

Optimal Control

  • Chapter
  • First Online:
Hybrid Dynamical Systems

Part of the book series: Advanced Textbooks in Control and Signal Processing ((C&SP))

  • 914 Accesses

Abstract

In the optimal control of hybrid systems, a stabilizing control law is designed to optimize, i.e., minimize or maximize, an appropriate performance criterion. Optimal control has been an active research area in Systems and Control, at least, since the 1950s, when seminal contributions such as Pontryagin’s minimum principle and Bellman’s dynamic programming were introduced. Optimal control problems for hybrid systems have attracted considerable attention since the mid 1990s, and extensive studies have been reported in the literature. Early studies may be found in the control systems literature involving relays or dynamical systems with hysteresis [1]. Significant efforts have been devoted to the extensions of dynamic programming and Pontryagin’s minimum principle to hybrid systems using different formalisms, see e.g., [2,3,4,5,6,7] and the references therein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, \(f\in \mathcal {C}^{h}\) means that the function f is a h-times continuously differentiable function with \(h\ge 0\) being an integer, for \(h=0\) f is just continuous, and \(\mathcal {C}^{\infty }\) means the function f is smooth, or infinitely many times differentiable.

References

  1. H. Witsenhausen. A class of hybrid-state continuous-time dynamic systems. Automatic Control, IEEE Transactions on, 11(2):161–167, Apr 1966.

    Google Scholar 

  2. M.S. Branicky, V.S. Borkar, and S.K. Mitter. A unified framework for hybrid control: model and optimal control theory. Automatic Control, IEEE Transactions on, 43(1):31–45, 1998.

    Google Scholar 

  3. H.J. Sussmann. A maximum principle for hybrid optimal control problems. In Decision and Control, 1999. Proceedings of the 38th IEEE Conference on, volume 1, pages 425–430 vol. 1, 1999.

    Google Scholar 

  4. S. Hedlund and A. Rantzer. Convex dynamic programming for hybrid systems. Automatic Control, IEEE Transactions on, 47(9):1536–1540, Sep 2002.

    Google Scholar 

  5. C.G. Cassandras, D.L. Pepyne, and Y. Wardi. Optimal control of a class of hybrid systems. IEEE Trans. Automat. Contr., 46(3):398–415, 2001.

    Google Scholar 

  6. M. S. Shaikh and P. E. Caines. On the hybrid optimal control problem: Theory and algorithms. IEEE Trans. Automat. Control, 52(9):1587–1603, 2007.

    Google Scholar 

  7. A. Pakniyat and P. E. Caines. On the minimum principle and dynamic programming for hybrid systems. IFAC Proc. Volumes, 47(3):9629–9634, 2014.

    Google Scholar 

  8. Donald E Kirk. Optimal control theory: an introduction. Prentice-Hall, 1970.

    Google Scholar 

  9. Daniel Liberzon. Calculus of variations and optimal control theory: a concise introduction. Princeton University Press, 2011.

    Google Scholar 

  10. Frank L Lewis, Draguna Vrabie, and Vassilis L Syrmos. Optimal control. John Wiley & Sons, 2012.

    Google Scholar 

  11. M. S. Shaikh and P. E. Caines. On relationships between Weierstrass-Erdmann corner condition, snell’s law and the hybrid minimum principle. In 2007 International Bhurban Conf. on Applied Sciences & Technology, pages 117–122. IEEE, 2007.

    Google Scholar 

  12. Xuping Xu and Panos J Antsaklis. Optimal control of switched systems based on parameterization of the switching instants. IEEE transactions on automatic control, 49(1):2–16, 2004.

    Google Scholar 

  13. Zhendong Sun and Shuzhi S. Ge. Switched linear systems: control and design. Springer Science & Business Media, 2006.

    Google Scholar 

  14. S. C. Bengea and R. A. DeCarlo. Optimal control of switching systems. Automatica, 41(1):11–27, January 2005.

    Google Scholar 

  15. Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N Pistikopoulos. The explicit linear quadratic regulator for constrained systems. Automatica, 38(1):3–20, 2002.

    Google Scholar 

  16. Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive control for linear and hybrid systems. Cambridge University Press, 2017.

    Google Scholar 

  17. A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and constraints. Automatica, 35(3):407–427, 1999.

    Google Scholar 

  18. Francesco Borrelli, Mato Baotić, Alberto Bemporad, and Manfred Morari. Dynamic programming for constrained optimal control of discrete-time linear hybrid systems. Automatica, 41(10):1709–1721, 2005.

    Google Scholar 

  19. F. Borrelli. Constrained Optimal Control of Linear and Hybrid Systems, volume 290 of Lecture Notes in Control and Information Sciences. Springer-Verlag, 2003.

    Google Scholar 

  20. AE Bryson and Ho YC. Applied Optimal Control: Optimization, Estimation and Control. CRC Press, 1975.

    Google Scholar 

  21. Brian DO Anderson and John B Moore. Optimal control: linear quadratic methods. Prentice-Hall, 1990.

    Google Scholar 

  22. A. F Filippov. On certain questions in the theory of optimal control. Journal of the Society for Industrial and Applied Mathematics, Series A: Control, 1(1):76–84, 1962.

    Google Scholar 

  23. Lamberto Cesari. Optimization theory and applications: problems with ordinary differential equations. Springer, 1983.

    Google Scholar 

  24. Benedetto Piccoli. Hybrid systems and optimal control. In Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No. 98CH36171), volume 1, pages 13–18. IEEE, 1998.

    Google Scholar 

  25. P Riedinger, F Kratz, C Iung, and C Zanne. Linear quadratic optimization for hybrid systems. In Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No. 99CH36304), volume 3, pages 3059–3064. IEEE, 1999.

    Google Scholar 

  26. Ali Pakniyat and Peter E Caines. On the hybrid minimum principle. arXiv preprint arXiv:1710.05521, 2017.

  27. Feng Zhu and Panos J Antsaklis. Optimal control of hybrid switched systems: A brief survey. Discrete Event Dynamic Systems, 25(3):345–364, 2015.

    Google Scholar 

  28. Xuping Xu and Panos J Antsaklis. Optimal control of switched systems via non-linear optimization based on direct differentiations of value functions. International Journal of Control, 75(16-17):1406–1426, 2002.

    Google Scholar 

  29. Xuping Xu and Panos J Antsaklis. Optimal control of switched systems: new results and open problems. In American Control Conference, 2000. Proceedings of the 2000, volume 4, pages 2683–2687. IEEE, 2000.

    Google Scholar 

  30. Xuping Xu and Panos J Antsaklis. A dynamic programming approach for optimal control of switched systems. In Decision and Control, 2000. Proceedings of the 39th IEEE Conference on, volume 2, pages 1822–1827. IEEE, 2000.

    Google Scholar 

  31. Xuping Xu and Panos J Antsaklis. An approach for solving general switched linear quadratic optimal control problems. In Decision and Control, 2001. Proceedings of the 40th IEEE Conference on, volume 3, pages 2478–2483. IEEE, 2001.

    Google Scholar 

  32. Xuping Xu and Panos J Antsaklis. Results and perspectives on computational methods for optimal control of switched systems. In International Workshop on Hybrid Systems: Computation and Control, pages 540–555. Springer, 2003.

    Google Scholar 

  33. Xuping Xu and Panos J Antsaklis. Optimal control of hybrid autonomous systems with state jumps. In American Control Conference, 2003. Proceedings of the 2003, volume 6, pages 5191–5196. IEEE, 2003.

    Google Scholar 

  34. Magnus Egerstedt, Yorai Wardi, and Henrik Axelsson. Transition-time optimization for switched-mode dynamical systems. Automatic Control, IEEE Transactions on, 51(1):110–115, 2006.

    Google Scholar 

  35. Humberto Gonzalez, Ramanarayan Vasudevan, Maryam Kamgarpour, S Shankar Sastry, Ruzena Bajcsy, and Claire Tomlin. A numerical method for the optimal control of switched systems. In Decision and Control (CDC), 2010 49th IEEE Conference on, pages 7519–7526. IEEE, 2010.

    Google Scholar 

  36. Yorai Wardi and Magnus Egerstedt. Algorithm for optimal mode scheduling in switched systems. In American Control Conference (ACC), 2012, pages 4546–4551. IEEE, 2012.

    Google Scholar 

  37. Tuhin Das and Ranjan Mukherjee. Optimally switched linear systems. Automatica, 44(5):1437–1441, 2008.

    Google Scholar 

  38. Eduardo Mojica-Nava, Nicanor Quijano, and Naly Rakoto-Ravalontsalama. A polynomial approach for optimal control of switched nonlinear systems. International Journal of Robust and Nonlinear Control, 2013.

    Google Scholar 

  39. A. Bemporad, F. Borrelli, and M. Morari. On the optimal control law for linear discrete time hybrid systems. In Hybrid systems: Computation and control, volume 2289 of Lecture Notes in Computer Science, pages 105–119. Springer, 2002.

    Google Scholar 

  40. S. Hedlund and A. Rantzer. Cdp tool: A matlab tool for optimal control of hybrid systems. department of automatic control. In Lund Institute of Technology, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Lin .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, H., Antsaklis, P.J. (2022). Optimal Control. In: Hybrid Dynamical Systems. Advanced Textbooks in Control and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-78731-8_5

Download citation

Publish with us

Policies and ethics