Skip to main content

CFD Modelling of OWC Devices for Wave Energy Harnessing

  • Chapter
  • First Online:
Ocean Wave Energy Systems

Part of the book series: Ocean Engineering & Oceanography ((OEO,volume 14))

  • 1057 Accesses

Abstract

This book chapter is focused on how to study the fluid dynamic behavior of a Wave Energy Converter (WEC) of the Oscillating Water Column (OWC) type by means of Computational Fluid Dynamics (CFD). The U-OWC plant installed in the harbor of Civitavecchia (Italy) is chosen as the case study. The CFD approach is described referring to ANSYS Fluent, release 17.2. The model is mainly oriented to investigate the interaction of single harmonic waves with the OWC device and allows the user to perform a preliminary wave-to-wire energy conversion process analysis. To limit the computational cost, a 2D model is developed. The presence of the Power Takeoff (PTO) system generally breaks the 2D configuration of this kind of device, and here an approach to overcome this problem is described in detail. The solution is the introduction of a porous medium region in the 2D computational domain, which emulates the effect of the PTO system on the fluid dynamic behavior of the flow inside the WEC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heath, T. V. (2012). A review of oscillating water columns. Philosophical Transactions of the Royal Society A, 370, 235–245. https://doi.org/10.1098/rsta.2011.0164

    Article  Google Scholar 

  2. Cui, Y., Liu, Z., Zhang, X., & Xu, C. (2019). Review of CFD studies on axial-flow self-rectifying turbines for OWC wave energy conversion. Ocean Engineering, 175, 80–102. https://doi.org/10.1016/j.oceaneng.2019.01.040

    Article  Google Scholar 

  3. Sharmila, N., Jalihal, P., Swamy, A. K., & Ravindran, M. (2004). Wave powered desalination system. Energy, 29(11), 1659–1672. https://doi.org/10.1016/j.energy.2004.03.099

    Article  Google Scholar 

  4. Hotta, H., Washio, Y., Yokozawa, H., & Miyazaki, T. (1996). R&D on wave power device “Mighty Whale.” Renewable Energy, 9(1–4), 1223–1226. https://doi.org/10.1016/0960-1481(96)88497-7

    Article  Google Scholar 

  5. Boake, C. B., Whittaker, T. J. T., Folley, M., Hamish, E. (2002). Overview and initial operational experience of the LIMPET wave energy plant. In Proceedings of the twelfth International Offshore and Polar Engineering Conference, Kitakyushu, Japan.

    Google Scholar 

  6. Falcão, A. F. O., & Henriques, J. C. C. (2016). Oscillating-water-column wave energy converters and air turbines: A review. Renewable Energy, 85, 1391–1424. https://doi.org/10.1016/j.renene.2015.07.086

    Article  Google Scholar 

  7. Zhang, D., Li, W., & Lin, Y. (2009). Wave energy in China: Current status and perspectives. Renewable Energy, 34(10), 2089–2092. https://doi.org/10.1016/j.renene.2009.03.014

    Article  Google Scholar 

  8. Suzuki, M., Takao, M., Sato, E., Nagata, S., Toyota, K., & Setoguchi, T. (2008). Performance prediction of OWC type small size wave power device with impulse turbine. Journal of Fluid Science and Technology, 3(3), 466–475. https://doi.org/10.1299/jfst.3.466

    Article  Google Scholar 

  9. Arena, F., Fiamma, V., Laface, V., Malara, G., Romolo, A., Strati, F. M. (2015). Monitoring of the U-OWC under construction in Civitavecchia (Rome, Italy). In Proceedings of the 11th European Wave and Tidal Energy Conference (EWTEC), Nantes, France, 6–11 September 2015.

    Google Scholar 

  10. Torre-Enciso, Y., Ortubia, I., de Aguileta, L. L., Marqués, J. (2009). Mutriku wave power plant: From the thinking out to the reality. In Proceedings of the 8th European Wave and Tidal Energy Conference (Vol. 710, p. 319329), Uppsala, Sweden, 7–10 September 2009.

    Google Scholar 

  11. Wells, A. A. (1976). Fluid driven rotary transducer. Br. Patent 1595700.

    Google Scholar 

  12. Raghunathan, S., Tan, C.P., Wells, N. A. J. (1981). AIAA Journal, 19(11), 1490–1492. https://doi.org/10.2514/3.60084.

  13. Curran, R., Stewart, T. P., & Whittaker, T. J. T. (1997). Design synthesis of oscillating water column wave energy converters: Performance matching. Proceedings of Institution Mechanical Engineering Part A Journal Power Energy, 211, 489–505. https://doi.org/10.1243/0957650981537375

    Article  Google Scholar 

  14. Kinoue, Y., Kim, T. H., Setoguchi, T., Mohammad, M., Kaneko, K., & Inoue, M. (2004). Hysteretic characteristics of monoplane and biplane wells turbine for wave power conversion. Energy Conversion and Management, 45, 1617–1629. https://doi.org/10.1016/J.ENCONMAN.2003.08.021

    Article  Google Scholar 

  15. Falcão, A. F. O., & Gato, L. M. C. (2012). Air turbines. Comprehensive. Renewable Energy, 8, 111–149. https://doi.org/10.1016/B978-0-08-087872-0.00805-2

    Article  Google Scholar 

  16. Ghisu, T., Puddu, P., & Cambuli, F. (2015). Numerical analysis of a Wells turbine at different non-dimensional piston frequencies. Journal of Thermal Science, 24(6), 535–543. https://doi.org/10.1007/s11630-015-0819-6

    Article  Google Scholar 

  17. Halder, P., Samad, A., & Thévenin, D. (2017). Improved design of a Wells turbine for higher operating range. Renewable Energy, 106, 122–134. https://doi.org/10.1016/j.renene.2017.01.012

    Article  Google Scholar 

  18. Kumar, P. M., & Samad, A. (2018). Effect of blade profiles on the performance of bidirectional wave energy turbine. In MATEC Web of Conferences, 172, art. no. 06002. https://doi.org/10.1051/matecconf/201817206002.

  19. Babintsev, I. A. (1975). Apparatus for converting sea wave energy into electrical energy. US Patent 3922739.

    Google Scholar 

  20. Setoguchi, T., Santhakumar, S., Maeda, H., & Takao, M. (2001). Kaneko K. A review of impulse turbines for wave energy conversion, 23(2), 261–292. https://doi.org/10.1016/S0960-1481(00)00175-0

    Article  Google Scholar 

  21. Henriques, J. C. C., Sheng, W., Falcão, A. F. O., & Gato, L. M. C. (2017). A comparison of biradial and wells air turbines on the mutriku breakwater OWC wave power plant. In Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering (Vol. 10) Ocean Renewable Energy. Trondheim, Norway. June 25–30, 2017. V010T09A037. https://doi.org/10.1115/OMAE2017-62651.

  22. Gurnari, L., Filianoti, P. G. F., Torresi, M., & Camporeale, S. M. (2020). The wave-to-wire energy conversion process for a fixed U-OWC Device. Energies, 13(1), 283. https://doi.org/10.3390/en13010283

    Article  Google Scholar 

  23. Filianoti, P. G. F., & Camporeale, S. M. (2008). A linearized model for estimating the performance of submerged resonant wave energy converters. Renewable Energy, 33(4), 631–641. https://doi.org/10.1016/j.renene.2007.03.018

    Article  Google Scholar 

  24. Malara, G., Romolo, A., Fiamma, V., & Arena, F. (2017). On the modelling of water column oscillations in U-OWC energy harvesters. Renewable Energy, 101, 964–972. https://doi.org/10.1016/j.renene.2016.09.051

    Article  Google Scholar 

  25. ANSYS, Inc. (2016). ANSYS fluent theory guide, release 17.2. ANSYS, Inc. Southpointe, 275, Technology Drive Canonsburg, PA 15317.

    Google Scholar 

  26. ANSYS, Inc. (2016). ANSYS fluent tutorial guide, release 17.2 ANSYS, Inc., 275 Technology Drive Canonsburg, PA 15317.

    Google Scholar 

  27. Bakker, A. (2002). Free surface flow. Applied computational fluid dynamics.

    Google Scholar 

  28. Torresi, M., Saponaro, A., Camporeale, S. M., Fortunato, B. (2008). CFD analysis of the flow through tube banks of HRSG. In Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea and Air, GT2008-51300, Berlin, Germany, 9–13 June 2008. https://doi.org/10.1115/GT2008-51300

  29. Torresi, M., Postiglione, N., Filianoti, P. G. F., Fortunato, B., & Camporeale, S. M. (2016). Design of a ducted wind turbine for offshore floating platforms. Wind Engineering, 40(5), 468–474. https://doi.org/10.1177/0309524X16660226

    Article  Google Scholar 

  30. Didier, E., Conde, J. M. P., Teixeira, P. R. F. (2011). Numerical simulation of an oscillation water column wave energy converter with and without damping. In Proceedings of the fourth International Conference on Computational Methods in Marine Engineering (pp. 206–217), Lisbon, Portugal, 28–30 September 2011.

    Google Scholar 

  31. Lopez, I., Pereiras, B., Castro, F., & Iglesias, G. (2014). Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS-VOF numerical model. Applied Energy, 127, 105–114.

    Article  Google Scholar 

  32. He, F., & Huang, Z. (2017). Characteristics of orifices for modeling nonlinear power take-off in wave-flume tests of oscillating water column devices. Journal of Zhejiang University. Science, 18, 329–345.

    Article  Google Scholar 

  33. He, F., Li, M., & Huang, Z. (2016). An experimental study of pile-supported OWC-type breakwaters: Energy extraction and vortex-induced energy loss. Energies, 2016(9), 540.

    Article  Google Scholar 

  34. Curran, R., & Gato, L. M. C. (1997). The energy conversion performances of several types of wells turbine designs. Proceedings of Institution Mechanical Engineering, 1997(211), 133.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the collaboration of Luana Gurnari, Michele Stefanizzi, and Daniele Pice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Torresi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torresi, M., Filianoti, P.G.F., Camporeale, S.M. (2022). CFD Modelling of OWC Devices for Wave Energy Harnessing. In: Samad, A., Sannasiraj, S., Sundar, V., Halder, P. (eds) Ocean Wave Energy Systems. Ocean Engineering & Oceanography, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-78716-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78716-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78715-8

  • Online ISBN: 978-3-030-78716-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics