Skip to main content

Development of Oscillating Water Column and Wave Overtopping—Wave Energy Converters in Europe Over the Years

  • Chapter
  • First Online:
Ocean Wave Energy Systems

Part of the book series: Ocean Engineering & Oceanography ((OEO,volume 14))

  • 1064 Accesses

Abstract

The latest Intergovernmental Panel on Climate Change (IPCC) in 2018 gave the clearest yet call for immediate action to reduce the amount of human-related activity CO2 emission. This fueled researchers to explore more sustainable ways of harvesting energy over the years, with ocean waves being one of the most attractive sources of renewable energy. This chapter will initially explore multiple ways of devices to harvest the energy from an ocean wave. The exploration then focuses on the development of Oscillating Water Column (OWC) type Wave Energy Converter (WEC), especially after the introduction of perforated vertical breakwater back in 1961 which open the possibility to combine both energy generation capability and coastal protection in the same structure. Examples of several projects which have been done in the past and are currently under construction in Europe will be given as an illustration of the current progression in the utilization of wave energy using OWC technology. Also, a Wave Overtopping Device—Wave Energy Converter will also be explored in a similar manner. A couple of representative project examples will also be given to similarly illustrate current progress on the development of such devices until now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, M. R., Barros, V. R., & Broome, J., et al. (2014, November). In In P. Aldunce, T. Downing, S. Joussaume et al. (Eds.), Intergovernmental Panel on Climate Change (IPCC) fifth assessment synthesis report—Climate Change 2014 synthesis report.

    Google Scholar 

  2. Intergovernmental Panel on Climate Change (IPCC). (2018, October) Special Report on Global Warming of 1.5 °C. Incheon, Republic of Korea.

    Google Scholar 

  3. Smart, G., & Noonan, M. (2018). Tidal stream and wave energy cost reduction and industrial benefit summary analysis. Catapult Offshore Renewable Energy.

    Google Scholar 

  4. Renewables in Numbers 2019. https://www.scottishrenewables.com/forums/renewables-in-numbers/. Accessed May 07, 2019

  5. Barstow, S., Mørk, G., Mollison, D., & Cruz, J. (2008). The wave energy resource. In Ocean wave energy (pp. 93–132). Berlin, Heidelberg: Springer.

    Google Scholar 

  6. World Energy Council. (2017). World energy resources 2016. Available at https://www.worldenergy.org/publications/2016/world-energy-resources-2016/. Accessed at May 14, 2018

  7. IRENA (International Renewable Energy Agency). (2014). Ocean energy technology: Innovation, patents, market status and trends. International Renewable Energy Agency, June 2014.

    Google Scholar 

  8. IRENA (International Renewable Energy Agency). (2020). Innovation outlook: Ocean energy technologies. https://www.irena.org/publications/2020/Dec/Innovation-Outlook-Ocean-Energy-Technologies. International Renewable Energy Agency, June 2020.

  9. Quirapas, M. A. J. R., Lin, H., Abundo, M. L. S., Brahim, S., & Santos, D. (2015). Ocean renewable energy in Southeast Asia: A review. Renewable and Sustainable Energy Reviews, 41, 799–817.

    Article  Google Scholar 

  10. Ly, D. K., Aboobacker, V. M., Abundo, S. M. L., Srikanth, N., & Tralich, P. (2014, November). Wave energy resource assessment for Southeast Asia. In Proceedings of the 5th International Conference on Sustainable Energy and Environment (SEE), Science, Technology, and Innovation for Association of Southeast Asian Nations (ASEAN) Green Growth, Bangkok, Thailand (pp. 19–21).

    Google Scholar 

  11. Masuda, Y. (1986). An experience of wave power generator through tests and improvement. In Hydrodynamics of ocean wave-energy utilization (pp. 445–452). Berlin, Heidelberg: Springer.

    Google Scholar 

  12. Falcão, A. F., & Henriques, J. C. (2014). Model-prototype similarity of oscillating-water-column wave energy converters. International Journal of Marine Energy, 6, 18–34.

    Article  Google Scholar 

  13. Falcão, A. F., & Henriques, J. C. (2016). Oscillating-water-column wave energy converters and air turbines: A review. Renewable Energy, 85, 1391–1424.

    Article  Google Scholar 

  14. Jarlan, G. E. (1961). A perforated vertical wall breakwater. The Dock and Harbour Authority, 486, 394–398.

    Google Scholar 

  15. Takahashi, S. (1989). Hydrodynamic characteristics of wave-power-extracting caisson breakwater. In Coastal engineering 1988 (pp. 2489–2503).

    Google Scholar 

  16. Evans, D. V., & Porter, R. (1995). Hydrodynamic characteristics of an oscillating water column device. Applied Ocean Research, 17(3), 155–164.

    Article  Google Scholar 

  17. Müller, G. U., & Whittaker, T. J. T. (1993). An investigation of breaking wave pressures on inclined walls. Ocean engineering, 20(4), 349–358.

    Article  Google Scholar 

  18. Morris-Thomas, M. T., Irvin, R. J., & Thiagarajan, K. P. (2007). An investigation into the hydrodynamic efficiency of an oscillating water column. Journal of Offshore Mechanics and Arctic Engineering, 129(4), 273–278.

    Article  Google Scholar 

  19. Preen, S., & Robertshaw, G. (2010). Development of a generic caisson design for an oscillating water column power generator. In Coasts, marine structures and breakwaters: Adapting to change: Proceedings of the 9th International Conference Organised by the Institution of Civil Engineers and Held in Edinburgh on 16 to 18 September 2009 (pp. 2–266). Thomas Telford Ltd.

    Google Scholar 

  20. Goda, Y. (1975). New wave pressure formulae for composite breakwaters. In Coastal engineering 1974 (pp. 1702–1720).

    Google Scholar 

  21. Goda, Y. (2010). Random seas and design of maritime structures (Vol. 15). World Scientific Publishing Company.

    Google Scholar 

  22. Patterson, C., Dunsire, R., & Hillier, S. (2010). Development of wave energy breakwater at Siadar, Isle of Lewis. In Coasts, marine structures and breakwaters: Adapting to change: Proceedings of the 9th International Conference Organised by the Institution of Civil Engineers and Held in Edinburgh on 16 to 18 September 2009 (pp. 1–738). Thomas Telford Ltd.

    Google Scholar 

  23. Kuo, Y. S., Lin, C. S., Chung, C. Y., & Wang, Y. K. (2015). Wave loading distribution of oscillating water column caisson breakwaters under non-breaking wave forces. Journal of Marine Science and Technology, 23(1), 78–87.

    Google Scholar 

  24. Pawitan, K. A., Dimakopoulos, A., Vicinanza, D., Allsop, W., & Bruce, T. (2019). Loading model for an OWC caisson based upon large-scale measurement. Coastal Engineering. https://doi.org/10.1016/j.coastaleng.2018.12.004

    Article  Google Scholar 

  25. Viviano, A., Naty, S., Foti, E., Bruce, T., Allsop, W., & Vicinanza, D. (2016). Large-scale experiments on the behaviour of a generalised Oscillating Water Column under random waves. Renewable Energy, 99, 875–887.

    Article  Google Scholar 

  26. Hattori, M., Arami, A., & Yui, T. (1994). Wave impact pressure on vertical walls under breaking waves of various types. Coastal Engineering, 22(1–2), 79–114.

    Article  Google Scholar 

  27. Allsop, N. W. H., Vicinanza, D., & McKenna, J. E. (1996). Wave forces and vertical and composite breakwater (pp. 40–41). HR Wallingford: Report SR 443.

    Google Scholar 

  28. Oumeraci, H. (1994). Review and analysis of vertical breakwater failures—lessons learned. Coastal Engineering, 22(1–2), 3–29. https://doi.org/10.1016/0378-3839(94)90046-9

    Article  Google Scholar 

  29. Müller, G., & Whittaker, T. J. (1995). Visualisation of flow conditions inside a shoreline wave power-station. Ocean engineering, 22(6), 629–641.

    Article  Google Scholar 

  30. López, I., Castro, A., & Iglesias, G. (2015). Hydrodynamic performance of an oscillating water column wave energy converter by means of particle imaging velocimetry. Energy, 83, 89–103.

    Article  Google Scholar 

  31. Medina-López, E., Ferrando, A. M., Gilabert, M. C., Del Pino, C., & Rodríguez, M. L. (2016). Note on a real gas model for OWC performance. Renewable Energy, 85, 588–597.

    Article  Google Scholar 

  32. Pawitan, K. A., Vicinanza, D., Allsop, W., & Bruce, T. (2020). Front wall and in-chamber impact loads on a breakwater-integrated oscillating water column. Journal of Waterways, Port, Coastal, and Ocean Engineering. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000595

    Article  Google Scholar 

  33. Arena, F., Romolo, A., Malara, G., Fiamma, V., & Laface, V. (2017, June). The first full operative U-OWC plants in the Port of Civitavecchia. In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering (pp. V010T09A022–V010T09A022). American Society of Mechanical Engineers.

    Google Scholar 

  34. Whittaker, T. J. T., Beattie, W., Folley, M., Boake, C., Wright, A., Osterried, M., & Heath, T. (2004). The Limpet Wave Power Project—The first years of operation. Renewable Energy.

    Google Scholar 

  35. The Queen's University of Belfast. Islay Limpet Wave Power Plant [Publishable Report] 1 November 1998 to 30 April 2002

    Google Scholar 

  36. Henriques, J. C. C., Cândido, J. J., Pontes, M. T., & Falcão, A. D. O. (2013). Wave energy resource assessment for a breakwater-integrated oscillating water column plant at Porto, Portugal. Energy, 63, 52–60.

    Article  Google Scholar 

  37. Horvath, E. (2009). Wave loading at coastal wave energy converters (MSc dissertation). University of Edinburgh.

    Google Scholar 

  38. Torre-Enciso, Y., Ortubia, I., López de Aguileta, L. I., Marqués, J. (2009, September). Mutriku wave power plant: from the thinking out to the reality. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden (Vol. 710, p. 319329).

    Google Scholar 

  39. Medina-Lopez, E., Allsop, N. W. H., Dimakopoulos, A., Bruce, T. (2015). Conjectures on the failure of the OWC Breakwater at Mutriku. In Proceedings of Coastal Structures and Solutions to Coastal Disasters Joint Conference, Boston, Massachusetts.

    Google Scholar 

  40. Boccotti, P. (2003). On a new wave energy absorber. Ocean Engineering, 30(9), 1191–1200.

    Article  Google Scholar 

  41. Boccotti, P. (2007). Comparison between a U-OWC and a conventional OWC. Ocean Engineering, 34(5–6), 799–805.

    Article  Google Scholar 

  42. Malara, G., Gomes, R. P. F., Arena, F., Henriques, J. C. C., Gato L. M. C., Falão, A. F. O. (2015). Hydrodynamic characteristics of a U_OWC plant: comparison between analytical and numerical results. In Proceedings of the 11st European Wave and Tidal Energy Conference, Nantes, France.

    Google Scholar 

  43. Washio, Y., Osawa, H., Nagata, Y., Fujii, F., Furuyama, H., & Fujita, T. (2000, January). The offshore floating type wave power device” Mighty Whale”: open sea tests. In The Tenth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers.

    Google Scholar 

  44. Gomes, R. P. F., Henriques, J. C. C., Gato, L. M. C., Falcão, A. D. O. (2011). Design of a floating oscillating water column for wave energy conversion. In Proceedings of the 9th European Wave and Tidal Energy Conference, Southampton, UK.

    Google Scholar 

  45. Parkinson, G. (2013). “Oceanlinx launches world’s first 1 MW wave energy machine in S.A.” RenewEconomy, 25 Oct. 2013, reneweconomy.com.au/oceanlinx-launches-worlds-first-1mw-wave-energy-machine-s-88176/.

    Google Scholar 

  46. Falcao, A., Henriques, J., Gomes, R., Vicente, P., Fonseca, F., Varandas, J., & Trigo, L. (2015). Dynamics of oscillating water column spar-buoy wave energy converters deployed in array and its survivability in extreme conditions. Marinet Infrastructure Access Report.

    Google Scholar 

  47. OPERA (Open Sea Operating Experience to Reduce Wave Energy Cost). http://opera-h2020.eu/

  48. Vicinanza, D., & Frigaard, P. (2008). Wave pressure acting on a seawave slot-cone generator. Coastal Engineering, 55(6), 553–568.

    Article  Google Scholar 

  49. Kofoed, J. P., Vicinanza, D., & Osaland, E. (2006, January). Estimation of design wave loads on the SSG WEC pilot plant based on 3-D model tests. In The Sixteenth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers.

    Google Scholar 

  50. Polinder, H., & Scuotto, M. (2005, November). Wave energy converters and their impact on power systems. In 2005 International Conference on Future Power Systems (p. 9). IEEE.

    Google Scholar 

  51. Buccino, M., Vicinanza, D., Ciardulli, F., Calabrese, M., & Kofoed, J. P. (2011). Wave pressures and loads on a small scale model of the Svåheia SSG pilot project. In Proceedings of 9th European Wave Tidal Energy Conference (pp. 1–7).

    Google Scholar 

  52. Frigaard, P., Lykke Andersen, T., Margheritini, L., & Vicinanza, D. (2008, September). Design; construction; reliability and hydraulic performance of an innovative wave overtopping device. In Proceedings of the 8th International Congress on Advances in Civil Engineering, Famagusta, North Cyprus (pp. 15–17).

    Google Scholar 

  53. Vicinanza, D., Ciardulli, F., Buccino, M., Calabrese, M., & Koefed, J. P. (2011). Wave loadings acting on an innovative breakwater for energy production. Journal of Coastal Research, 608–612.

    Google Scholar 

  54. Margheritini, L., Vicinanza, D., & Frigaard, P. (2009). SSG wave energy converter: Design, reliability and hydraulic performance of an innovative overtopping device. Renewable Energy, 34(5), 1371–1380.

    Article  Google Scholar 

  55. Vicinanza, D., Margheritini, L., Kofoed, J. P., & Buccino, M. (2012). The SSG wave energy converter: Performance, status and recent developments. Energies, 5(2), 193–226.

    Article  Google Scholar 

  56. Vicinanza, D., Stagonas, D., Müller, G., Nørgaard, J. H., & Andersen, T. L. (2012b). Innovative breakwaters design for wave energy conversion. Coast. Engineering Proceedings, 1(1).

    Google Scholar 

  57. Vicinanza, D., Contestabile, P., Nørgaard, J. Q. H., & Andersen, T. L. (2014). Innovative rubble mound breakwaters for overtopping wave energy conversion. Coastal Engineering, 88, 154–170.

    Article  Google Scholar 

  58. Contestabile, P., Ferrante, V., Di Lauro, E., & Vicinanza, D. (2016, June). Prototype overtopping breakwater for wave energy conversion at port of Naples. In The 26th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers.

    Google Scholar 

  59. Iuppa, C., Contestabile, P., Cavallaro, L., Foti, E., & Vicinanza, D. (2016). Hydraulic performance of an innovative breakwater for overtopping wave energy conversion. Sustainability, 8(12), 1226.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Tom Bruce from the University of Edinburgh for his guidance and suggestion during the writing of the OWC chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krisna Adi Pawitan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pawitan, K.A. (2022). Development of Oscillating Water Column and Wave Overtopping—Wave Energy Converters in Europe Over the Years. In: Samad, A., Sannasiraj, S., Sundar, V., Halder, P. (eds) Ocean Wave Energy Systems. Ocean Engineering & Oceanography, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-78716-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78716-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78715-8

  • Online ISBN: 978-3-030-78716-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics