Skip to main content

Direct Absorber for Wave Energy Conversion

  • Chapter
  • First Online:
Ocean Wave Energy Systems

Part of the book series: Ocean Engineering & Oceanography ((OEO,volume 14))

  • 1045 Accesses

Abstract

In this chapter, considerable and promising designs have been investigated as wave energy conversion systems. A new design is introduced to the wave energy conversion system to produce power from regular and irregular waves. Laboratory experiments have been conducted for the Wave Hunter system in the wave tank of the Fluid Dynamics and Ship Theory Institute (FDS) of the Hamburg University of Technology. The experimental tests are done for two floats with different designs. The first one with 50 cm in diameter with a conical shape and inverted cup, the second one is 40 cm with the same design of 50 cm with adding a baffle in the lower part. The results showed that that float indicates a significant efficiency especially the 40 cm buoy with 40% in regular waves instead of 33% for 50 cm float, this is because of the design of the float. This float is characterized by baffles touching the surface of the water as wings. This is leading to the increase of Froude-Krylov and Drag forces in the vertical direction. Finally testing the system in irregular waves to indicate how it is efficient in the real sea condition. The experiments of the irregular waves are done for different wave characteristics of two models JONSWAP and P-M models. The float of 50 cm is tested in these waves and gets an efficiency of 38% as average for all conditions which are higher than any system with the same configurations around the world. These results encourage us to use this system to be installed in real sea conditions for wave energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newell, C. (2010). A mathematical and numerical examination of wave-current interaction and wave-driven hydrodynamics. IRIS NUI Galway’s New Institutional Research.

    Google Scholar 

  2. Singh, S. P., & Sen, D. (2007). A comparative linear and nonlinear ship motion study using 3-D time domain methods. Ocean Engineering, 34(13), 1863–1881.

    Article  Google Scholar 

  3. Salter, S. H. (1974). Wave power. Nature, 249(5459), 720–724.

    Article  Google Scholar 

  4. Linton, C. M., & McIver, P. (2010). Handbook of mathematical techniques for wave/structure interactions. CRC Press.

    MATH  Google Scholar 

  5. Chaplin, R. V. (2013). Seaweaver: A new surge-resonant wave energy converter. Renewable Energy, 57(September), 662–670.

    Article  Google Scholar 

  6. Orer, G., & Ozdamar, A. (2007). An experimental study on the efficiency of the submerged plate wave energy converter. Renewable Energy, 32(8), 1317–1327.

    Article  Google Scholar 

  7. Falnes, J. (2007). A review of wave-energy extraction. Marine Structures, 20(4), 185–201.

    Article  Google Scholar 

  8. McCormick, M. E. (2013). Ocean wave energy conversion. Courier Corporation.

    Google Scholar 

  9. Filippo, M., Bonamano, S., Stella, G., Peviani, M., & Marcelli, M. (2012). Italian off-shore wave energy map, using gauges and numerical model data. In Proceedings of the European Seminar OWEMES 2012 Offshore Wind and Other Marine Renewable Energies in Mediterranean and European Seas (pp. 467–76). Rome-Italy.

    Google Scholar 

  10. Finnegan, W. (2013). Wave-structure interaction of offshore wave energy converters. Doctor of Philosophy, Ireland: The College of Engineering and Informatics, NUI Galway.

    Google Scholar 

  11. Pierson, W. J., & Moskowitz, L. (1964). A Proposed Spectral Form for Fully Developed Wind Seas Based on the Similarity Theory of SA Kitaigorodskii. Journal of Geophysical Research, 69(24), 5181–5190.

    Article  Google Scholar 

  12. Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., et al. (1973). Measurements of wind-wave growth and swell decay during the joint north sea wave project (JONSWAP). TLJ200100 · TLJ200510. Germany: Deutches Hydrographisches Institut.

    Google Scholar 

  13. Morison, J. R., Johnson, J. W., & O’Brien, M. P. (1953). Experimental studies of forces on piles. Coastal Engineering Proceedings, 1(4), 25.

    Article  Google Scholar 

  14. Clauss, G. F., Klein, M., & Onorato, M. (2011). Formation of extraordinarily high waves in space and time. In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering (Vol. 2, pp. 417–29). Rotterdam, The Netherlands: The American Society of Mechanical Engineers. https://doi.org/10.1115/OMAE2011-49545.

  15. Wiegel, R. L. (2005). Oceanographical engineering (Vol. 4). New Jersey-USA: Courier Dover Publications.

    Google Scholar 

  16. “EMEC: European Marine Energy Centre.” 2015. Accessed June 17. http://www.emec.org.uk/.

  17. Power, Pelamis Wave. 2014. Bernera Wave Farm. [WWW] Available from http://www.pelamiswave.com/our-projects/project/4/Bernera-Wave-Farm. Accessed 6/4/2021.

  18. “Oyster 1, Orkney.” 2015. Accessed January 7. http://www.aquamarinepower.com/projects/oyster-1-orkney.aspx.

  19. Mueller, M. A., Polinder, H., & Bakerm N. (2007). Current and novel electrical generator technology for wave energy converters. In Electric Machines & Drives Conference, 2007. IEMDC’07. IEEE International (Vol. 2. pp. 1401–1406). Antalya: IEEE.

    Google Scholar 

  20. Cruz, J. (2008). Ocean wave energy. Springer Series in Green Energy and Technology.

    Google Scholar 

  21. “OCEANLINX Project.” 2015. Accessed January 8. http://www.oceanlinx.com/.

  22. Marleaux, P. Voith Hydro Region Asia Pacific. “Voith | Wave Power Plants.” Accessed 17/01/2021. http://voith.com/en/products-services/hydro-power/ocean-energies/wave-power-plants-590.html.

  23. Le Crom, I., Bermejo, H. C., Pecher, A., Azevedo, E. B., Reis, F. V. (2011). Incident wave climate at the OWC Pico plant: Validation of a feed-forward based propagation method (ANN) and a numerical simulation (SWAN) with measured data. In 9th Ewtec 2011. University of Southampton.

    Google Scholar 

  24. Muetze, A., & Vining, J. G. (2006). Ocean wave energy conversion-a survey. In: 41st IAS Annual Meeting. Conference Record of the 2006 IEEE, Industry Applications Conference, 2006 (Vol. 3, pp 1410–1417). Tampa, FL: IEEE.

    Google Scholar 

  25. Wu, F., Zhang, X.-P., Ping, Ju., & Sterling, M. J. H. (2008). Modeling and control of AWS-based wave energy conversion system integrated into power grid. IEEE Transactions on Power Systems , 23(3), 1196–1204.

    Article  Google Scholar 

  26. Mann, L. D., Burns, A. R., & Ottaviano, M. E. (2007) CETO, a Carbon free wave power energy provider of the future. In Proceedings of the 7th European Wave and Tidal Energy Conference (EWTEC).

    Google Scholar 

  27. Babarit, A., Guglielmi, M., & Clément, A. H. (2009). Declutching control of a wave energy converter. Ocean Engineering, 36(12–13), 1015–1024.

    Article  Google Scholar 

  28. Clément, A., McCullen, P., Falcão, A., Fiorentino, A., Gardner, F., Hammarlund, K., Lemonis, G., et al. (2002). Wave energy in Europe: current status and perspectives. Renewable and Sustainable Energy Reviews, 6(5), 405–431.

    Article  Google Scholar 

  29. Ramadan, A., Mohamed, M. H., Abdien, S. M., Marzouk, S. Y., El Feky, A., & El Baz, A. R. (2014). Analytical investigation and experimental validation of an inverted cup float used for wave energy conversion. Energy, 70(June), 539–546.

    Article  Google Scholar 

  30. Backer, De., Griet, M. V., Frigaard, P., Beels, C., & De Rouck, J. (2010). Bottom slamming on heaving point absorber wave energy devices. Journal of Marine Science and Technology, 15(2), 119–130.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Mohamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramadan, A., Mohamed, M.H. (2022). Direct Absorber for Wave Energy Conversion. In: Samad, A., Sannasiraj, S., Sundar, V., Halder, P. (eds) Ocean Wave Energy Systems. Ocean Engineering & Oceanography, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-78716-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78716-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78715-8

  • Online ISBN: 978-3-030-78716-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics