Skip to main content

Passive Flow Control Methods for Performance Augmentation in Air Turbines Used for Wave Energy Conversion—A Review

  • Chapter
  • First Online:
Ocean Wave Energy Systems

Part of the book series: Ocean Engineering & Oceanography ((OEO,volume 14))

  • 1028 Accesses

Abstract

The performance enhancement of air turbines used in wave energy extraction is quintessential to realize the commercialization of wave energy plants. This chapter discusses the various passive flow control methods used to enhance the performance of the Wells and axial impulse air turbines that are employed in the oscillating water column to harvest energy. The different passive flow control methods were elaborated with their effect on the performance parameters of the air turbines, and it was found that the implemented passive flow control devices addressed critical limitations such as narrow operating range, reduced efficiency, and low power output, etc. Moreover, the combined investigation of different passive flow control devices was suggested to achieve the overall performance enhancement of the Wells turbines. Lastly, only a handful of literature is available on the passive flow control of the axial impulse turbines, and dedicated research was recommended to analyze and implement compatible passive flow control devices to improve their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AOA:

Angle of attack

CFD:

Computational fluid dynamics

FC:

Flow coefficient

FH:

Flap height

GF:

Gurney flap

LE:

Leading-edge

LES:

Large eddy simulation

OWC:

Oscillating water column

PS:

Pressure side

PTO:

Power take-off

RANS:

Reynolds-averaged Navier-Stokes

RETB:

Radiused edge tip blade

REF:

Reference

SETB:

Sharp-edged tip blade

SETE:

The static extended trailing edge

SS:

Suction side

SST:

Shear stress transport

TE:

Trailing edge

VTB:

Variable thickness blade

WEC:

Wave energy converter

C :

Chord length (mm)

L :

Lift force (N)

D :

drag force (N)

F T :

Tangential force (N)

F A :

Axial force (N)

V :

Absolute velocity (m/s)

U T :

Blade tip velocity (m/s)

W :

Relative velocity (m/s)

zg:

No. of guide vanes

zr:

No of rotor blades

1 :

Inlet

2 :

Outlet

References

  1. Renewables. (2019). Global status report REN21. REN21 Secretariat

    Google Scholar 

  2. Drew, B., Plummer, A., & Sahinkaya, M. N. (2009). A review of wave energy converter technology. Journal of Power and Energy, 223, 887–902. https://doi.org/10.1243/09576509JPE782

  3. Falcão, A. F. O. (2010). Wave energy utilization: A review of the technologies. Renewable and Sustainable Energy Reviews, 14, 899–918https://doi.org/10.1016/j.rser.2009.11.003

  4. Sannasiraj, S. A., & Sundar, V. (2016). Assessment of wave energy potential and its harvesting approach along the Indian coast. Renewable Energy, 99, 398–409. https://doi.org/10.1016/j.renene.2016.07.017.

  5. Brito, E., Melo, A., Villate, J. L. (Eds.). (2017). Annual report 2016: Ocean energy systems. IEA-OES.

    Google Scholar 

  6. Pecher, A., & Kofoed, J. P. (Eds.). (2017). Handbook of ocean wave energy, Ocean engineering & oceanography. https://doi.org/10.1007/978-3-319-39889-1_8

  7. Kumar, P. M., Halder, P., & Samad, A. (2021). Radiused Edge Blade Tip for a Wider Operating Range in Wells Turbine. Arabian Journal for Science and Engineering, 46(3), 2663–2676 https://doi.org/10.1007/s13369-020-05185-z

  8. Heath, T. V. (2012). A review of oscillating water columns. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1959), 235–245. https://doi.org/10.1098/rsta.2011.0164

  9. Falcão, A. F. O., & Henriques, J. C. C. (2016). Oscillating-water-column wave energy converters and air turbines: A review. Renewable and Sustainable Energy, 85, 1391–1424. https://doi.org/10.1016/j.renene.2015.07.086

  10. Ansarifard, N., Fleming, A., Henderson, A., Kianejad, S. S., & Chai, S. (2018). Optimization study on the downstream section of a radial inflow turbine. AWTEC 2018 Proc. 311.

    Google Scholar 

  11. Ansarifard, N., Fleming, A., Henderson, A., Kianejad, S. S., & Chai, S. (2019). Design optimisation of a unidirectional centrifugal radial-air-turbine for application in OWC wave energy converters. Energies, 12, 2791.

    Article  Google Scholar 

  12. Ansarifard, N., Kianejad, S. S., Fleming, A., Henderson, A., & Chai, S. (2020). Design optimization of a purely radial turbine for operation in the inhalation mode of an oscillating water column. Renewable Energy, 152, 540–556.

    Article  Google Scholar 

  13. Dixon, S. L., & Hall, C. A. (2010). Fluid mechanics and thermodynamics of turbomachinery (6th ed.). Butterworth–Heinemann.

    Google Scholar 

  14. Falcão, A. F., Henriques, J. C., & Gato, L. M. (2018). Self-rectifying air turbines for wave energy conversion: A comparative analysis. Renewable and Sustainable Energy Reviews, 91, 1231–1241.

    Article  Google Scholar 

  15. Luo, Y., Presas, A., & Wang, Z. (2019). Numerical analysis of the influence of design parameters on the efficiency of an OWC axial impulse turbine for wave energy conversion. Energies, 12(5), 939.

    Article  Google Scholar 

  16. Cui, Y., Liu, Z., Zhang, X., & Xu, C. (2019). Review of CFD studies on axial-flow self-rectifying turbines for OWC wave energy conversion. Ocean Engineering, 175, 80–102.

    Article  Google Scholar 

  17. Greenblatt, D., Whalen, E. A., & Wygnanski, I. J. (2019). Introduction to the flow control virtual collection. AIAA Journal, 57, 3111–3114. https://doi.org/10.2514/1.J058507

  18. Gad-el-Hak, M. (2007). Flow control: Passive, active, and reactive flow management. Cambridge university press.

    Google Scholar 

  19. Wang, J., & Feng, L. (2019). Flow control techniques and applications. Cambridge University Press.

    Google Scholar 

  20. Webster, M., & Gato, L. M. C. (1999). The Effect of rotor blade sweep on the performance of the Wells turbine. International Journal of Offshore and Polar Engineering, 9, 233–239.

    Google Scholar 

  21. Webster, M., & Gato, L. M. C. (2001). The effect of rotor blade shape on the performance of the Wells turbine. International Journal Offshore Polar Engineering, 11, 227–230. https://doi.org/10.1016/S0960-1481(00)00163-4

  22. Kim, T. H., Setoguchi, T., Kaneko, K., & Raghunathan, S. (2002). Numerical investigation on the effect of blade sweep on the performance of Wells turbine. Renewable Energy, 25, 235–248. https://doi.org/10.1016/S0960-1481(00)00210-X

  23. Starzmann, R., & Carolus, T. (2013). Effect of blade skew strategies on the operating range and aeroacoustic performance of the Wells turbine. Journal of Turbomachinery, 136, 011003. https://doi.org/10.1115/1.4025156

  24. Halder, P., Samad, A., & Thevenin, D. (2017). Improved design of a Wells turbine for higher operating range. Renewable Energy, 106, 122–134. https://doi.org/10.1016/j.renene.2017.01.012

  25. Setoguchi, T., Santhakumar, S., Takao, M., & Kim, K. K. (2003). A modified Wells turbine for wave energy conversion. Renewable Energy, 28, 79–91. https://doi.org/10.1016/S0960-1481(02)00006-X

  26. Takao, M., Setoguchi, T., Kinoue, Y., & Kaneko, K. (2007). Wells turbine with end plates for wave energy conversion. Ocean Engineering, 34, 1790–1795. https://doi.org/10.1016/j.oceaneng.2006.10.009

  27. Cui, Y., & Hyun, B. S. (2016). Numerical study on Wells turbine with penetrating blade tip treatments for wave energy conversion. International Journal of Naval Architecture and Ocean Engineering, 8(5), 456–465. https://doi.org/10.1016/j.ijnaoe.2016.05.009

  28. Cui, Y., Hyun, B. S., & Kim, K. (2017). Numerical study on air turbines with enhanced techniques for OWC wave energy conversion. China Ocean Engineering, 31(5), 517–527.

    Article  Google Scholar 

  29. Watterson, J. K., & Raghunathan, S. (1997). Computed effects of tip clearance on Wells turbine performance. 35th Aerospace Science Meeting Exhibition, AIAA Paper 97-0994.

    Google Scholar 

  30. Raghunathan, S. (1995). The Wells air turbine for wave energy conversion. Progress in Aerospace Sciences, 31, 335–386. https://doi.org/10.1016/0376-0421(95)00001-F

  31. Taha, Z., & Sawada, T. (2010). A comparison of computational and experimental results of Wells turbine performance for wave energy conversion. Applied Ocean Research, 32, 83–90. https://doi.org/10.1016/j.apor.2010.04.002

  32. Takao, M., Setoguchi, T., Nagata, S., Toyota, K. (2008). A study on the effects of blade profile and non-uniform tip clearance of the Wells turbine. Proceedings ASME 27th International Conference on Offshore Mechanics Arctic. Engineering OMAE2008. ASME, pp. 625–632. https://doi.org/10.1115/omae2008-57235

  33. Taha, Z., Ya, T. T., & Sawada, T. (2011). Numerical investigation on the performance of Wells turbine with non-uniform tip clearance for wave energy conversion. Applied ocean research, 33(4), 321–331. https://doi.org/10.1016/j.apor.2011.07.002

  34. Govardhan, M., & Dhanasekaran, T. S. (2002). Effect of guide vanes on the performance of a self-rectifying air turbine with constant and variable chord rotors. Renewable Energy, 26(2), 201–219. https://doi.org/10.1016/S0960-1481(01)00124-0

  35. Govardhan, M., & Chauhan, V. S. (2007). Numerical studies on performance improvement of self-rectifying air turbine for wave energy conversion. Engineering Applications of Computational Fluid Mechanics, 1(1), 57–70. https://doi.org/10.1080/19942060.2007.11015182

  36. Soltanmohamadi, R., & Lakzian, E. (2016). Improved design of Wells turbine for wave energy conversion using entropy generation. Meccanica, 51(8), 1713–1722. https://doi.org/10.1007/s11012-015-0330-x

  37. Halder, P., Samad, A., Kim, J. H., & Choi, Y. S. (2015). High performance ocean energy harvesting turbine design—A new casing treatment scheme. Energy, 86, 219–231. https://doi.org/10.1016/j.energy.2015.03.131

  38. Shehata, A. S., Xiao, Q., Saqr, K. M., Naguib, A., & Alexander, D. (2017). Passive flow control for aerodynamic performance enhancement of airfoil with its application in Wells turbine–under oscillating flow condition. Ocean Engineering, 136, 31–53. https://doi.org/10.1016/j.oceaneng.2017.03.010

  39. Shehata, A. S., Xiao, Q., Selim, M. M., Elbatran, A. H., & Alexander, D. (2017). Enhancement of performance of wave turbine during stall using passive flow control: First and second law analysis. Renewable Energy, 113, 369–392. https://doi.org/10.1016/j.renene.2017.06.008

  40. Shehata, A. S., Xiao, Q., Kotb, M. A., Selim, M. M., Elbatran, A. H., & Alexander, D. (2018). Effect of passive flow control on the aerodynamic performance, entropy generation and aeroacoustic noise of axial turbines for wave energy extractor. Ocean Engineering, 157, 262–300. https://doi.org/10.1016/j.oceaneng.2018.03.053

  41. Nazeryan, M., & Lakzian, E. (2018). Detailed entropy generation analysis of a Wells turbine using the variation of the blade thickness. Energy, 143, 385–405. https://doi.org/10.1016/j.energy.2017.11.006

  42. Fish, F. E., & Battle, J. M. (1995). Hydrodynamic design of the humpback whale flipper. Journal of Morphology, 225(1), 51–60.

    Article  Google Scholar 

  43. Hansen, K. L., Kelso, R. M., & Dally, B. B. (2011). Performance variations of leading-edge tubercles for distinct airfoil profiles. AIAA Journal, 49(1), 185–194.

    Article  Google Scholar 

  44. Skillen, A., Revell, A., Pinelli, A., Piomelli, U., & Favier, J. (2014). Flow over a wing with leading-edge undulations. AIAA Journal, 53(2), 464–472.

    Article  Google Scholar 

  45. Johari, H., Henoch, C. W., Custodio, D., & Levshin, A. (2007). Effects of Leading-Edge Protuberances on Airfoil Performance. AIAA journal, 45(11), 2634–2642.

    Article  Google Scholar 

  46. Kumar, P. M., Halder, P., Samad, A., & Rhee, S. H. (2018). Wave energy harvesting turbine: Effect of hub-to-tip profile modification. International Journal of Fluid Machinery and Systems, 11(1), 55–62.

    Article  Google Scholar 

  47. Kumar, P. M., Halder, P., & Samad, A. (2018, June). Performance analysis of wells turbine with radiused blade tip. International Conference on Offshore Mechanics and Arctic Engineering (Vol. 51319, p. V010T09A049). American Society of Mechanical Engineers.

    Google Scholar 

  48. Kumar, P. M., & Samad, A. (2020). Nature-inspired design of a turbine blade harnessing wave energy. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power Energy, 234(5), 670–689.

    Google Scholar 

  49. Kumar, P. M., & Samad, A. (2019). Introducing gurney flap to Wells turbine blade and performance analysis with OpenFOAM. Ocean Engineering, 187, 106212.

    Article  Google Scholar 

  50. Kumar, P. M., Halder, P., Husain, A., & Samad, A. (2019). Performance enhancement of Wells turbine: Combined radiused edge blade tip, static extended trailing edge, and variable thickness modifications. Ocean Engineering, 185, 47–58.

    Article  Google Scholar 

  51. Hyun, B. S., Moon, J. S., Hong, S. W., & Kim, K. S. (2005). Aerodynamic Characteristics of impulse turbine with an end plate for wave energy conversion. Journal of Ocean Engineering and Technology, 19(6), 1–7.

    Google Scholar 

  52. Takao, M., Setoguchi, T., Kinoue, Y., & Kaneko, K. (2007). Wells turbine with end plates for wave energy conversion. Ocean Engineering, 34(11–12), 1790–1795.

    Article  Google Scholar 

  53. Setoguchi, T., Takao, M., Kaneko, K., Nagata, S., & Toyota, K. (2007, January). Effect of end plates on the performance of an impulse turbine for wave energy conversion. Fluids Engineering Division Summer Meeting, 42894, 1045–1049.

    Google Scholar 

  54. Liu, Z., Cui, Y., Kim, K. W., & Shi, H. D. (2016). Numerical study on a modified impulse turbine for OWC wave energy conversion. Ocean Engineering, 111, 533–542.

    Article  Google Scholar 

  55. Hyun, B. S., Moon, J. S., Hong, S. W., & Kim, K. S. (2006). A Study on the performance of the ring-type impulse turbine for wave energy conversion. Journal of Ocean Engineering and Technology, 20(1), 20–25.

    Google Scholar 

  56. Ranjith, B., Halder, P., & Samad, A. (2019). High-performance ocean energy harvesting turbine design—Detailed flow analysis with blade leaning strategy. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power Energy, 233(3), 379–396.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, P.M., Halder, P., Samad, A. (2022). Passive Flow Control Methods for Performance Augmentation in Air Turbines Used for Wave Energy Conversion—A Review. In: Samad, A., Sannasiraj, S., Sundar, V., Halder, P. (eds) Ocean Wave Energy Systems. Ocean Engineering & Oceanography, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-78716-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78716-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78715-8

  • Online ISBN: 978-3-030-78716-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics