Skip to main content

An Exploratory Assessment of Focused Septal Growth in Hypertrophic Cardiomyopathy

  • 1900 Accesses

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12738)

Abstract

Growth and Remodelling (G&R) processes are typical responses to changes in the heart’s loading conditions. The most frequent types of growth in the left ventricle (LV) are thought to involve growth parallel to (eccentric) or perpendicular to (concentric) the fiber direction. However, hypertrophic cardiomyopathy (HCM), a genetic mutation of the sarcomeric proteins, exhibits heterogeneous patterns of growth and fiber disarray despite the absence of clear changes in loading conditions. Previous studies have predicted cardiac growth due to increased overload in the heart [7, 12, 23] as well as modelled inverse G&R post-treatment [1, 14]. Since observed growth patterns in HCM are more complex than standard models of hypertrophy in the heart, fewer studies focus on the geometric changes in this pathological case. By adapting established kinematic growth tensors for the standard types of hypertrophy in an isotropic and orthotropic material model, the paper aims to identify different factors which contribute to the heterogeneous growth patterns observed in HCM. Consequently, it was possible to distinguish that fiber disarray alone does not appear to induce the typical phenotypes of HCM. Instead, it appears that an underlying trigger for growth in HCM might be a consequence of factors stimulating isotropic growth (e.g., inflammation). Additionally, morphological changes in the septal region resulted in higher amounts of incompatibility, evidenced by increased residual stresses in the grown region.

Keywords

  • Growth and Remodelling
  • Hypertrophic cardiomyopathy
  • Computational modelling

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-78710-3_32
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-78710-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. Arumugam, J., Mojumder, J., Kassab, G., Lee, L.C.: Model of anisotropic reverse cardiac growth in mechanical dyssynchrony. Sci. Rep. 9(1), 1–12 (2019)

    Google Scholar 

  2. Bayer, J.D., Blake, R.C., Plank, G., Trayanova, N.A.: A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Ann. Biomed. Eng. 40(10), 2243–2254 (2012)

    CrossRef  Google Scholar 

  3. Davies, M.J., McKenna, W.J.: Hypertrophic cardiomyopathy–pathology and pathogenesis. Histopathology 26(6), 493–500 (1995)

    CrossRef  Google Scholar 

  4. Del Bianco, F., Franzone, P.C., Scacchi, S., Fassina, L.: Electromechanical effects of concentric hypertrophy on the left ventricle: a simulation study. Comput. Biol. Med. 99, 236–256 (2018)

    CrossRef  Google Scholar 

  5. Doste, R., et al.: A rule-based method to model myocardial fiber orientation in cardiac biventricular geometries with outflow tracts. Int. J. Numer. Meth. Biomed. Eng. 35(4), e3185 (2019)

    CrossRef  Google Scholar 

  6. Fang, L., Ellims, A.H., Beale, A.L., Taylor, A.J., Murphy, A., Dart, A.M.: Systemic inflammation is associated with myocardial fibrosis, diastolic dysfunction, and cardiac hypertrophy in patients with hypertrophic cardiomyopathy. Am. J. Transl. Res. 9(11), 5063–5073 (2017)

    Google Scholar 

  7. Göktepe, S., Abilez, O.J., Parker, K.K., Kuhl, E.: A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J. Theor. Biol. 265(3), 433–442 (2010)

    CrossRef  Google Scholar 

  8. Goodbrake, C., Goriely, A., Yavari, A.: The mathematical foundations of anelasticity: Existence of smooth global intermediate configurations. Proc. R. Soc. A 477(2245), 20200462 (2021)

    CrossRef  MathSciNet  Google Scholar 

  9. Hadjicharalambous, M., Lee, J., Smith, N.P., Nordsletten, D.A.: A displacement-based finite element formulation for incompressible and nearly-incompressible cardiac mechanics. Comput. Method. Appl. M. 274, 213–236 (2014)

    CrossRef  MathSciNet  Google Scholar 

  10. Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. A Math. Phys. Eng. Sci. 367(1902), 3445–3475 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for growth and remodeling of soft tissues. Math. Mod. Meth. Appl. Sci. 12(3), 407–430 (2002)

    CrossRef  MathSciNet  Google Scholar 

  12. Kerckhoffs, R.C., Omens, J.H., McCulloch, A.D.: A single strain-based growth law predicts concentric and eccentric cardiac growth during pressure and volume overload. Mech. Res. Commun. 42, 40–50 (2012)

    CrossRef  Google Scholar 

  13. Klues, H.G., Schiffers, A., Maron, B.J.: Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients. J. Am. Coll. 26(7), 1699–1708 (1995)

    CrossRef  Google Scholar 

  14. Lee, L.C., Genet, M., Acevedo-Bolton, G., Ordovas, K., Guccione, J.M., Kuhl, E.: A computational model that predicts reverse growth in response to mechanical unloading. Biomech. Model. Mechanobiol. 14(2), 217–229 (2014). https://doi.org/10.1007/s10237-014-0598-0

    CrossRef  Google Scholar 

  15. Lee, J., et al.: Multiphysics computational modeling in CHeart. SIAM J. Comput. 38(3), C150–C178 (2016)

    CrossRef  Google Scholar 

  16. Liew, A.C., Vassiliou, V.S., Cooper, R., Raphael, C.E.: Hypertrophic cardiomyopathy–past, present and future. Clin. Med. 6(12), 118 (2017)

    Google Scholar 

  17. Marian, A.J., Braunwald, E.: Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ. Res. 121(7), 749–770 (2017)

    CrossRef  Google Scholar 

  18. Maron, B.J., Roberts, W.C.: Quantitative analysis of cardiac muscle cell disorganization in the ventricular septum of patients with hypertrophic cardiomyopathy. Circulation 59(4), 689–706 (1979)

    CrossRef  Google Scholar 

  19. Maron, B.J., Epstein, S.E.: Hypertrophic cardiomyopathy: a discussion of nomenclature. Amer. J. Cardiol. 43(6), 1242–1244 (1979)

    CrossRef  Google Scholar 

  20. Maron, B.J.: Hypertrophic cardiomyopathy: a systematic review. JAMA 287(10), 1308–1320 (2002)

    CrossRef  Google Scholar 

  21. MATLAB. 9.9.0.1524771 (R2020b). Natick, Massachusetts: The MathWorks Inc. (2020)

    Google Scholar 

  22. Mauger, C., et al.: An iterative diffeomorphic algorithm for registration of subdivision surfaces: application to congenital heart disease. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018, 596–599 (2018)

    Google Scholar 

  23. Peirlinck, M., et al.: Using machine learning to characterize heart failure across the scales. Biomech. Model. Mechanobiol. 18(6), 1987–2001 (2019). https://doi.org/10.1007/s10237-019-01190-w

    CrossRef  Google Scholar 

  24. Rodriguez, E.K., Hoger, A., McCulloch, A.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994)

    CrossRef  Google Scholar 

  25. Semsarian, C., Ingles, J., Maron, M.S., Maron, B.J.: New perspectives on the prevalence of hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 65(12), 1249–1254 (2015)

    CrossRef  Google Scholar 

  26. Teare, D.: Asymmetrical hypertrophy of the heart in young adults. Brit. Heart J. 20(1), 1–8 (1958)

    CrossRef  Google Scholar 

  27. Witzenburg, C.M., Holmes, J.W.: A comparison of phenomenologic growth laws for myocardial hypertrophy. J. Elast. 129(1), 257–281 (2017)

    CrossRef  MathSciNet  Google Scholar 

  28. Wolf, C.M., et al.: Somatic events modify hypertrophic cardiomyopathy pathology and link hypertrophy to arrhythmia. P. Natl. Acad. Sci. USA 102(50), 18123–18128 (2005)

    CrossRef  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge funding from Engineering and Physical Sciences Research Council (EP/R003866/1). This work was also supported by the Wellcome ESPRC Centre for Medical Engineering at King’s College London (WT203148/Z/16/Z) and the British Heart Foundation (TG/17/3/33406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra P. Hager .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Hager, S.P., Zhang, W., Miller, R.M., Lee, J., Nordsletten, D.A. (2021). An Exploratory Assessment of Focused Septal Growth in Hypertrophic Cardiomyopathy. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds) Functional Imaging and Modeling of the Heart. FIMH 2021. Lecture Notes in Computer Science(), vol 12738. Springer, Cham. https://doi.org/10.1007/978-3-030-78710-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78710-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78709-7

  • Online ISBN: 978-3-030-78710-3

  • eBook Packages: Computer ScienceComputer Science (R0)