Skip to main content

CNN-Based Cardiac Motion Extraction to Generate Deformable Geometric Left Ventricle Myocardial Models from Cine MRI

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12738))

Abstract

Patient-specific left ventricle (LV) myocardial models have the potential to be used in a variety of clinical scenarios for improved diagnosis and treatment plans. Cine cardiac magnetic resonance (MR) imaging provides high resolution images to reconstruct patient-specific geometric models of the LV myocardium. With the advent of deep learning, accurate segmentation of cardiac chambers from cine cardiac MR images and unsupervised learning for image registration for cardiac motion estimation on a large number of image datasets is attainable. Here, we propose a deep leaning-based framework for the development of patient-specific geometric models of LV myocardium from cine cardiac MR images, using the Automated Cardiac Diagnosis Challenge (ACDC) dataset. We use the deformation field estimated from the VoxelMorph-based convolutional neural network (CNN) to propagate the isosurface mesh and volume mesh of the end-diastole (ED) frame to the subsequent frames of the cardiac cycle. We assess the CNN-based propagated models against segmented models at each cardiac phase, as well as models propagated using another traditional nonrigid image registration technique. Additionally, we generate dynamic LV myocardial volume meshes at all phases of the cardiac cycle using the log barrier-based mesh warping (LBWARP) method and compare them with the CNN-propagated volume meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  2. Bello, G.A., et al.: Deep-learning cardiac motion analysis for human survival prediction. Nature Mach. Intell. 1(2), 95–104 (2019)

    Article  Google Scholar 

  3. Benjamin, E.J., et al.: Heart disease and stroke statistics-2017 update: a report from the American heart association. Circulation 135(10), e146–e603 (2017)

    Article  Google Scholar 

  4. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  5. Cignoni, P., et al.: Meshlab: an open-source mesh processing tool. In: Eurographics Italian Chapter Conference. vol. 2008, pp. 129–136. Salerno, Italy (2008)

    Google Scholar 

  6. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces. Med. Image Anal. 57, 226–236 (2019)

    Article  Google Scholar 

  7. Dangi, S., Linte, C.A., Yaniv, Z.: Cine cardiac MRI slice misalignment correction towards full 3D left ventricle segmentation. In: Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling. vol. 10576, p. 1057607. International Society for Optics and Photonics (2018)

    Google Scholar 

  8. Gray, R.A., Pathmanathan, P.: Patient-specific cardiovascular computational modeling: diversity of personalization and challenges. J. Cardiovascular Transl. Res. 11(2), 80–88 (2018)

    Article  Google Scholar 

  9. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2009)

    Article  Google Scholar 

  10. Lewiner, T., Lopes, H., Vieira, A.W., Tavares, G.: Efficient implementation of marching cubes’ cases with topological guarantees. J. Graph. Tools 8(2), 1–15 (2003)

    Article  Google Scholar 

  11. Marstal, K., Berendsen, F., Staring, M., Klein, S.: SimpleElastix: a user-friendly, multi-lingual library for medical image registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 134–142 (2016)

    Google Scholar 

  12. Morris, P.D., et al.: Computational fluid dynamics modelling in cardiovascular medicine. Heart 102(1), 18–28 (2016)

    Article  Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  15. Shontz, S.M., Vavasis, S.A.: A mesh warping algorithm based on weighted Laplacian smoothing. In: 12\(^{th}\) International Meshing Roundtable, pp. 147–158 (2003)

    Google Scholar 

  16. Si, H.: Tetgen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. (TOMS) 41(2), 1–36 (2015)

    Article  MathSciNet  Google Scholar 

  17. Smith, N., et al.: Euheart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. Interface Focus 1(3), 349–364 (2011)

    Article  Google Scholar 

  18. Trilinos Project Team, T.: The Trilinos Project Website (2020). https://trilinos.github.io. Accessed 12 Nov 2020

  19. Upendra, R.R., Wentz, B.J., Shontz, S.M., Linte, C.A.: A convolutional neural network-based deformable image registration method for cardiac motion estimation from cine cardiac MR images. In: 2020 Computing in Cardiology, pp. 1–4. IEEE (2020)

    Google Scholar 

  20. Zhu, Y., Zhou Sr., Z., Liao Sr., G., Yuan, K.: New loss functions for medical image registration based on Voxelmorph. In: Medical Imaging 2020: Image Processing, vol. 11313, p. 113132E. International Society for Optics and Photonics (2020)

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Science Foundation (Award No. OAC 1808530, OAC 1808553 & CCF 1717894) and the National Institutes of Health (Award No. R35GM128877).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roshan Reddy Upendra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Upendra, R.R., Wentz, B.J., Simon, R., Shontz, S.M., Linte, C.A. (2021). CNN-Based Cardiac Motion Extraction to Generate Deformable Geometric Left Ventricle Myocardial Models from Cine MRI. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds) Functional Imaging and Modeling of the Heart. FIMH 2021. Lecture Notes in Computer Science(), vol 12738. Springer, Cham. https://doi.org/10.1007/978-3-030-78710-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78710-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78709-7

  • Online ISBN: 978-3-030-78710-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics