Skip to main content

Domain Adaptation for Automatic Aorta Segmentation of 4D Flow Magnetic Resonance Imaging Data from Multiple Vendor Scanners

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12738)


The lack of standardized pipelines for image processing has prevented the application of deep learning (DL) techniques for the segmentation of the aorta in phase-contrast enhanced magnetic resonance angiography (PC-MRA). Furthermore, large, well-curated and annotated datasets, which are needed to create DL-based models able to generalize, are rare. We present the adaptation of the popular nnU-net DL framework to automatically segment the aorta in 4D flow MRI-derived angiograms. The resulting segmentations in a large database (\(> 300\) cases) with normal cases and examples of different pathologies of the aorta provided from a single centre were excellent after post-processing (Dice score of 0.944). Subsequently, we explored the generalisation of the trained network in a small dataset of images (around 20 cases) acquired in a different hospital with another scanner. Without domain adaptation, only with a model trained with the large dataset, the obtained results were substantially worst than with adding a few cases of the small dataset (Dice scores of 0.61 vs 0.86, respectively). The obtained results created good quality segmentations of the aorta in 4D flow MRI, which can later be post-processed to assess blood flow patterns, similarly than with manual annotations. However, advanced domain adaptation schemes are very important in 4D flow MRI due to the large differences in image characteristics between different vendor scanners available in multiple centers.


  • Aortic segmentation
  • Deep learning
  • nnU-net
  • 4D flow magnetic resonance imaging

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. 1.


  1. Markl, M., Kilner, P.J., Ebbers, T.: Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 13(1), 7 (2011).

    CrossRef  Google Scholar 

  2. Berhane, H., Scott, M., Elbaz, M., et al.: Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning. Magn. Reson. Med. 84(4), 2204–2218 (2020)

    CrossRef  Google Scholar 

  3. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a selfconm guring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Google Scholar 

  4. Oliveira, H., Dos Santos, J.: Deep transfer learning for segmentation of anatomical structures in chest radiographs. In: Proceedings - 31st Conference on Graphics, Patterns and Images, SIBGRAPI 2018, pp. 204–211. Institute of Electrical and Electronics Engineers Inc. (Jan 2019)

    Google Scholar 

  5. Schroeder, W., Ken, M., Lorensen, B.: The Visualization Toolkit (VTK), 4th edn. Kitware, Clifton Park (2006).

  6. Antiga, L., Piccinelli, M., Botti, L., Ene-Iordache, B., Remuzzi, A., Steinman, D.A.: An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46(11), 1097–1112 (2008).

    CrossRef  Google Scholar 

  7. Herment, A., Kachenoura, N., Lefort, M., et al.: Automated segmentation of the aorta from phase contrast MR images: validation against expert tracing in healthy volunteers and in patients with a dilated aorta. J. Magn. Reson. Imaging 31(4), 881–888 (2010)

    CrossRef  Google Scholar 

  8. Bustamante, M., Gupta, V., Forsberg, D., Carlhäll, C.J., Engvall, J., Ebbers, T.: Automated multi-atlas segmentation of cardiac 4D flow MRI. Med. Image Anal. 49, 128–140 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Oscar Camara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aviles, J. et al. (2021). Domain Adaptation for Automatic Aorta Segmentation of 4D Flow Magnetic Resonance Imaging Data from Multiple Vendor Scanners. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds) Functional Imaging and Modeling of the Heart. FIMH 2021. Lecture Notes in Computer Science(), vol 12738. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78709-7

  • Online ISBN: 978-3-030-78710-3

  • eBook Packages: Computer ScienceComputer Science (R0)