Skip to main content

Preventive Strategies for Chemotherapy-Induced Peripheral Neuropathy

Basic Science and Models for Drug Development

  • Chapter
  • First Online:
Diagnosis, Management and Emerging Strategies for Chemotherapy-Induced Neuropathy

Abstract

There are no clinically relevant, evidence-based preventive strategies for chemotherapy-induced peripheral neuropathy (CIPN). In this chapter we discuss how limitations in current animal models lead to insufficient understanding of CIPN pathophysiology and how drug development for neurodegenerative diseases in general suffers because of this. We draw on previous studies of CIPN prevention to reflect upon what can be learned, but this chapter is not a historical account of past CIPN strategies nor it is an exhaustive list of CIPN mechanisms in rodents and mice. There are several succinctly well-written and recent reviews that cover these topics.

We look towards the horizon of CIPN drug development and provide an overview of the strategies that are emerging. We argue that some of these strategies herald early signs of methodological change for CIPN research, where basic science researchers begin to employ a systems biology approach to model neurological diseases such as CIPN in greater pathophysiological detail. Here diseases are caused by disruption to biological networks such as the neuron/neuroglia homeostasis rather than singular mechanisms within individual cell types. In this new perspective, we suggest three “core mechanisms” of CIPN that could be modeled within a systems biology methodology. We present studies that show how new methods, such as single cell multi-omics and bioengineering of human 3D organoids, can be analyzed with machine learning algorithms to aid CIPN drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mayer DK, Nasso SF, Earp JA (2017) Defining cancer survivors, their needs, and perspectives on survivorship health care in the USA. Lancet Oncol 18:e11–e18

    Article  PubMed  Google Scholar 

  2. Hingorani AD, Kuan V, Finan C et al (2019) Improving the odds of drug development success through human genomics: modelling study. Sci Rep. https://doi.org/10.1038/s41598-019-54849-w

  3. Staff NP, Fehrenbacher JC, Caillaud M, Damaj MI, Segal RA, Rieger S (2020) Pathogenesis of paclitaxel-induced peripheral neuropathy: a current review of in vitro and in vivo findings using rodent and human model systems. Exp Neurol. https://doi.org/10.1016/j.expneurol.2019.113121

  4. Lazic A, Popović J, Paunesku T, Woloschak GE, Stevanović M (2020) Insights into platinum-induced peripheral neuropathy-current perspective. Neural Regen Res 15:1623–1630

    Article  PubMed  PubMed Central  Google Scholar 

  5. Butler D (2008) Translational research: crossing the valley of death. Nature. https://doi.org/10.1038/453840a

  6. Hertz D, Krumbach E, Nobles B, Erickson S, Farris K (2018) Abstract P4-11-06: The role of patient perceptions in under reporting chemotherapy induced peripheral neuropathy (CIPN). In: San Antonio breast cancer symposium. https://doi.org/10.1158/1538-7445.sabcs17-p4-11-06

  7. Tanay MA, Armes J (2019) Lived experiences and support needs of women who developed chemotherapy-induced peripheral neuropathy following treatment for breast and ovarian cancer. Eur J Cancer Care (Engl). https://doi.org/10.1111/ecc.13011

  8. Drott J, Starkhammar H, Kjellgren K, Berterö C (2016) The trajectory of neurotoxic side effects’ impact on daily life: a qualitative study. Support Care Cancer 24:3455–3461

    Article  PubMed  Google Scholar 

  9. Colvin LA (2020) Europe PMC Funders Group. Chemotherapy-induced peripheral neuropathy (CIPN): where are we now? Pain 160:1–22

    Google Scholar 

  10. Bonhof CS, Trompetter HR, Vreugdenhil G, van de Poll-Franse LV, Mols F (2020) Painful and non-painful chemotherapy-induced peripheral neuropathy and quality of life in colorectal cancer survivors: results from the population-based PROFILES registry. Support Care Cancer. https://doi.org/10.1007/s00520-020-05438-5

  11. Margineanu DG (2016) Neuropharmacology beyond reductionism—a likely prospect. BioSystems 141:1–9

    Article  PubMed  Google Scholar 

  12. Freedman DH (2019) Hunting for new drugs with AI. Nature. https://doi.org/10.1038/d41586-019-03846-0

  13. (2020) Method of the year 2019: single-cell multimodal omics. Nat Methods. https://doi.org/10.1038/s41592-019-0703-5

  14. Martinez NW, Sánchez A, Diaz P et al (2020) Metformin protects from oxaliplatin induced peripheral neuropathy in rats. Neurobiol Pain 8:100048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Areti A, Komirishetty P, Kumar A (2017) Carvedilol prevents functional deficits in peripheral nerve mitochondria of rats with oxaliplatin-evoked painful peripheral neuropathy. Toxicol Appl Pharmacol 322:97–103

    Article  CAS  PubMed  Google Scholar 

  16. Fernandez A, Sturmberg J, Lukersmith S, Madden R, Torkfar G, Colagiuri R, Salvador-Carulla L (2015) Evidence-based medicine: is it a bridge too far? Heal Res Policy Syst 13:1–9

    Google Scholar 

  17. Martell K, Fairchild A, LeGerrier B, Sinha R, Baker S, Liu H, Ghose A, Olivotto IA, Kerba M (2018) Rates of cannabis use in patients with cancer. Curr Oncol 25:219–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cristino L, Bisogno T, Di Marzo V (2019) Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol. https://doi.org/10.1038/s41582-019-0284-z

  19. Deo RC (2015) Machine learning in medicine. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.115.001593

  20. McCrary JM, Goldstein D, Boyle F et al (2017) Optimal clinical assessment strategies for chemotherapy-induced peripheral neuropathy (CIPN): a systematic review and Delphi survey. Support Care Cancer 25:3485–3493

    Article  PubMed  Google Scholar 

  21. Gordon-Williams R, Farquhar-Smith P (2020) Recent advances in understanding chemotherapy-induced peripheral neuropathy [version 1; peer review: 2 approved]. F1000Research 9:1–13

    Google Scholar 

  22. Eldridge S, Guo L, Hamre J (2020) A comparative review of chemotherapy-induced peripheral neuropathy in in vivo and in vitro models. Toxicol Pathol 48:190–201

    Article  PubMed  Google Scholar 

  23. Argyriou AA, Bruna J, Park SB, Cavaletti G (2020) Emerging pharmacological strategies for the management of chemotherapy-induced peripheral neurotoxicity (CIPN), based on novel CIPN mechanisms. Expert Rev Neurother 00:1–12

    Google Scholar 

  24. Farquhar-Smith P (2011) Chemotherapy-induced neuropathic pain. Curr Opin Support Palliat Care 5:1–7

    Article  PubMed  Google Scholar 

  25. Kieffer JM, Postma TJ, van de Poll-Franse L, Mols F, Heimans JJ, Cavaletti G, Aaronson NK (2017) Evaluation of the psychometric properties of the EORTC chemotherapy-induced peripheral neuropathy questionnaire (QLQ-CIPN20). Qual Life Res 26:2999–3010

    Article  PubMed  Google Scholar 

  26. Baker M (2015) Over half of psychology studies fail reproducibility test. Nature. https://doi.org/10.1038/nature.2015.18248

  27. Smith EML, Knoerl R, Yang JJ, Kanzawa-Lee G, Lee D, Bridges CM (2018) In search of a gold standard patient-reported outcome measure for use in chemotherapy-induced peripheral neuropathy clinical trials. Cancer Control 25:1073274818756608

    Article  PubMed  PubMed Central  Google Scholar 

  28. Saito T, Makiura D, Inoue J et al (2020) Comparison between quantitative and subjective assessments of chemotherapy-induced peripheral neuropathy in cancer patients: a prospective cohort study. Phys Ther Res 7–10

    Google Scholar 

  29. Vojnits K, Mahammad S, Collins TJ, Bhatia M (2019) Chemotherapy-induced neuropathy and drug discovery platform using human sensory neurons converted directly from adult peripheral blood. Stem Cells Transl Med. https://doi.org/10.1002/sctm.19-0054

  30. Mostajo-Radji MA, Schmitz MT, Montoya ST, Pollen AA (2020) Reverse engineering human brain evolution using organoid models. Brain Res. https://doi.org/10.1016/j.brainres.2019.146582

  31. Currie GL, Angel-Scott HN, Colvin L et al (2019) Animal models of chemotherapy-induced peripheral neuropathy: a machine-assisted systematic review and meta-analysis. PLoS Biol. https://doi.org/10.1371/journal.pbio.3000243

  32. Napier AD, Ancarno C, Butler B et al (2014) Culture and health. Lancet 384:1607–1639

    Article  PubMed  Google Scholar 

  33. Tuttle AH, Tohyama S, Ramsay T, Kimmelman J, Schweinhardt P, Bennett GJ, Mogil JS (2015) Increasing placebo responses over time in U.S. clinical trials of neuropathic pain. Pain. https://doi.org/10.1097/j.pain.0000000000000333

  34. Radder H (2009) The philosophy of scientific experimentation: a review. Autom Exp 1:2

    Article  PubMed  PubMed Central  Google Scholar 

  35. Höke A, Ray M (2014) Rodent models of chemotherapy-induced peripheral neuropathy. ILAR J 54:273–281

    Article  PubMed  CAS  Google Scholar 

  36. Bajic JE (2019) From the bottom up: chemotherapy-induced gut toxicity, glial reactivity and cognitive impairment

    Google Scholar 

  37. Montassier E, Gastinne T, Vangay P et al (2015) Chemotherapy-driven dysbiosis in the intestinal microbiome. Aliment Pharmacol Ther. https://doi.org/10.1111/apt.13302

  38. Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK, Kinross JM (2017) Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol. https://doi.org/10.1038/nrgastro.2017.20

  39. Louise Pouncey A, James Scott A, Leslie Alexander J, Marchesi J, Kinross J (2018) Gut microbiota, chemotherapy and the host: the influence of the gut microbiota on cancer treatment. Ecancermedicalscience. https://doi.org/10.3332/ecancer.2018.868

  40. Matsuoka A, Maeda O, Mizutani T, Nakano Y, Tsunoda N, Kikumori T, Goto H, Ando Y (2016) Bevacizumab exacerbates paclitaxel-induced neuropathy: a retrospective cohort study. PLoS One. https://doi.org/10.1371/journal.pone.0168707

  41. Carozzi V, Chiorazzi A, Canta A et al (2009) Effect of the chronic combined administration of cisplatin and paclitaxel in a rat model of peripheral neurotoxicity. Eur J Cancer. https://doi.org/10.1016/j.ejca.2008.10.038

  42. Zhang J, Tuckett RP (2008) Comparison of paclitaxel and cisplatin effects on the slowly adapting type I mechanoreceptor. Brain Res 1214:50–57

    Article  CAS  PubMed  Google Scholar 

  43. Loeppenthin K, Dalton SO, Johansen C et al (2020) Total burden of disease in cancer patients at diagnosis—a Danish nationwide study of multimorbidity and redeemed medication. Br J Cancer. https://doi.org/10.1038/s41416-020-0950-3

  44. Housley SN, Nardelli P, Carrasco D, Rotterman TM, Pfahl E, Matyunina LV, McDonald JF, Cope TC (2020) Cancer exacerbates chemotherapy-induced sensory neuropathy. Cancer Res. https://doi.org/10.1158/0008-5472.can-19-2331

  45. Sikandar S, Dickenson AH (2013) II. No need for translation when the same language is spoken. Br J Anaesth 111:3–6

    Article  CAS  PubMed  Google Scholar 

  46. Bruna J, Alberti P, Calls-Cobos A, Caillaud M, Damaj MI, Navarro X (2020) Methods for in vivo studies in rodents of chemotherapy induced peripheral neuropathy. Exp Neurol. https://doi.org/10.1016/j.expneurol.2019.113154

  47. Gadgil S, Ergün M, van den Heuvel SA, van der Wal SE, Scheffer GJ, Hooijmans CR (2019) A systematic summary and comparison of animal models for chemotherapy induced (peripheral) neuropathy (CIPN). PLoS One 14:1–17

    Article  CAS  Google Scholar 

  48. Reardon S (2018) Frustrated Alzheimer’s researchers seek better lab mice. Nature. https://doi.org/10.1038/d41586-018-07484-w

  49. Perel P, Roberts I, Sena E, Wheble P, Briscoe C, Sandercock P, Macleod M, Mignini LE, Jayaram P, Khan KS (2007) Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ 334:197

    Article  CAS  PubMed  Google Scholar 

  50. Pound P, Ebrahim S, Sandercock P, Bracken MB, Roberts I (2004) Where is the evidence that animal research benefits humans? Br Med J. https://doi.org/10.1136/bmj.328.7438.514

  51. Thompson SW, Davis LE, Kornfeld M, Hilgers RD, Standefer JC (1984) Cisplatin neuropathy. Clinical, electrophysiologic, morphologic, and toxicologic studies. Cancer. https://doi.org/10.1002/1097-0142(19841001)54:7<1269::AID-CNCR2820540707>3.0.CO;2-9

  52. Gary PH, JBM, SCT et al (1990) The New England Journal of Medicine Downloaded from nejm.org on April 1, 2015. For personal use only. No other uses without permission. Copyright © 1990 Massachusetts Medical Society. All rights reserved. N Engl J Med 323:1120–1123

    Google Scholar 

  53. Mollman JE, Glover DJ, Hogan WM, Furman RE (1988) Cisplatin neuropathy. Risk factors, prognosis, and protection by WR-2721. Cancer. https://doi.org/10.1002/1097-0142(19880601)61:11<2192::AID-CNCR2820611110>3.0.CO;2-A

  54. Roberts JA, Jenison EL, Kim K, Ph D, Clarke-pearson D, Langleben A (1998) A randomized, multicenter, double-blind, placebo-controlled, dose-finding study of org 2766 in the prevention or delay of cisplatin-induced neuropathies in women with ovarian cancer. Int J Gynecol Obstet 61:95–95

    Article  Google Scholar 

  55. Albers JW, Chaudhry V, Cavaletti G, Donehower RC (2014) Interventions for preventing neuropathy caused by cisplatin and related compounds. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD005228.pub4

  56. Stone JB, DeAngelis LM (2016) Cancer-treatment-induced neurotoxicity-focus on newer treatments. Nat Rev Clin Oncol. https://doi.org/10.1038/nrclinonc.2015.152

  57. Pellacani C, Eleftheriou G (2020) Neurotoxicity of antineoplastic drugs: mechanisms, susceptibility, and neuroprotective strategies. Adv Med Sci 65:265–285

    Article  PubMed  Google Scholar 

  58. Cirrincione AM, Rieger S (2020) Analyzing chemotherapy-induced peripheral neuropathy in vivo using non-mammalian animal models. Exp Neurol 323:113090

    Article  CAS  PubMed  Google Scholar 

  59. Ibrahim EY, Ehrlich BE (2020) Prevention of chemotherapy-induced peripheral neuropathy: a review of recent findings. Crit Rev Oncol Hematol. https://doi.org/10.1016/j.critrevonc.2019.102831

  60. Zhang H, Li Y, De Carvalho-Barbosa M, Kavelaars A, Heijnen CJ, Albrecht PJ, Dougherty PM (2016) Dorsal root ganglion infiltration by macrophages contributes to paclitaxel chemotherapy-induced peripheral neuropathy. J Pain. https://doi.org/10.1016/j.jpain.2016.02.011

  61. Vaure C, Liu Y (2014) A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol. https://doi.org/10.3389/fimmu.2014.00316

  62. Mangus LM, Rao DB, Ebenezer GJ (2020) Intraepidermal nerve fiber analysis in human patients and animal models of peripheral neuropathy: a comparative review. Toxicol Pathol. https://doi.org/10.1177/0192623319855969

  63. Hu S, Huang KM, Adams EJ, Loprinzi CL, Lustberg MB (2019) Recent developments of novel pharmacologic therapeutics for prevention of chemotherapy-induced peripheral neuropathy. Clin Cancer Res 25:6295–6301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lees JG, Makker PGS, Tonkin RS, Abdulla M, Park SB, Goldstein D, Moalem-Taylor G (2017) Immune-mediated processes implicated in chemotherapy-induced peripheral neuropathy. Eur J Cancer. https://doi.org/10.1016/j.ejca.2016.12.006

  65. Toma W, Kyte SL, Bagdas D et al (2019) The α7 nicotinic receptor silent agonist R-47 prevents and reverses paclitaxel-induced peripheral neuropathy in mice without tolerance or altering nicotine reward and withdrawal. Exp Neurol 320:113010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brandolini L, D’Angelo M, Antonosante A, Allegretti M, Cimini A (2019) Chemokine signaling in chemotherapy-induced neuropathic pain. Int J Mol Sci 20:1–13

    Article  CAS  Google Scholar 

  67. Canta A, Pozzi E, Carozzi V (2015) Mitochondrial dysfunction in chemotherapy-induced peripheral neuropathy (CIPN). Toxics. https://doi.org/10.3390/toxics3020198

  68. Griffiths LA, Flatters SJL (2015) Pharmacological modulation of the mitochondrial electron transport chain in paclitaxel-induced painful peripheral neuropathy. J Pain. https://doi.org/10.1016/j.jpain.2015.06.008

  69. Fukuda Y, Li Y, Segal RA (2017) A mechanistic understanding of axon degeneration in chemotherapy-induced peripheral neuropathy. Front Neurosci 11:481

    Article  PubMed  PubMed Central  Google Scholar 

  70. McLeary F, Davis A, Rudrawar S, Perkins A, Anoopkumar-Dukie S (2019) Mechanisms underlying select chemotherapeutic-agent-induced neuroinflammation and subsequent neurodegeneration. Eur J Pharmacol 842:49–56

    Article  CAS  PubMed  Google Scholar 

  71. Janes K, Little JW, Li C et al (2014) The development and maintenance of paclitaxel-induced neuropathic pain require activation of the sphingosine 1-phosphate receptor subtype 1. J Biol Chem 289:21082–21097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stockstill K, Doyle TM, Yan X et al (2018) Dysregulation of sphingolipid metabolism contributes to bortezomib-induced neuropathic pain. J Exp Med. https://doi.org/10.1084/jem.20170584

  73. Aromolaran KA, Goldstein PA (2017) Ion channels and neuronal hyperexcitability in chemotherapy-induced peripheral neuropathy; cause and effect? Mol Pain 13:1744806917714693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Poupon L, Lamoine S, Pereira V et al (2018) Targeting the TREK-1 potassium channel via riluzole to eliminate the neuropathic and depressive-like effects of oxaliplatin. Neuropharmacology 140:43–61

    Article  CAS  PubMed  Google Scholar 

  75. Li Y, North RY, Rhines LD et al (2018) DRG voltage-gated sodium channel 1.7 is upregulated in paclitaxel-induced neuropathy in rats and in humans with neuropathic pain. J Neurosci. https://doi.org/10.1523/jneurosci.0899-17.2017

  76. Imai S, Koyanagi M, Azimi Z et al (2017) Taxanes and platinum derivatives impair Schwann cells via distinct mechanisms. Sci Rep 7:1–14

    Article  CAS  Google Scholar 

  77. Zhou L, Ao L, Yan Y, Li C, Li W, Ye A, Liu J, Hu Y, Fang W, Li Y (2020) Levo-corydalmine attenuates vincristine-induced neuropathic pain in mice by upregulating the Nrf2/HO-1/CO pathway to inhibit connexin 43 expression. Neurotherapeutics 17:340–355

    Article  CAS  PubMed  Google Scholar 

  78. Esposito MF, Malayil R, Hanes M, Deer T (2019) Unique characteristics of the dorsal root ganglion as a target for neuromodulation. Pain Med (United States) 20:S23–S30

    Article  Google Scholar 

  79. Verkhratsky A, Ho MS, Zorec R, Parpura V (2019) The concept of neuroglia. Adv Exp Med Biol. https://doi.org/10.1007/978-981-13-9913-8_1

  80. Krarup-Hansen A, Rietz B, Krarup C, Heydorn K, Rørth M, Schmalbruch H (1999) Histology and platinum content of sensory ganglia and sural nerves in patients treated with cisplatin and carboplatin: an autopsy study. Neuropathol Appl Neurobiol 25:28–39

    Article  Google Scholar 

  81. Argyriou AA, Park SB, Islam B, Tamburin S, Velasco R, Alberti P, Bruna J, Psimaras D, Cavaletti G, Cornblath DR (2019) Neurophysiological, nerve imaging and other techniques to assess chemotherapy-induced peripheral neurotoxicity in the clinical and research settings. J Neurol Neurosurg Psychiatry 90(12):1361–1369

    Google Scholar 

  82. Apostolidis L, Schwarz D, Xia A et al (2017) Dorsal root ganglia hypertrophy as in vivo correlate of oxaliplatin-induced polyneuropathy. PLoS One 12:1–15

    Article  CAS  Google Scholar 

  83. Makker PGS, Duffy SS, Lees JG, Perera CJ, Tonkin RS, Butovsky O, Park SB, Goldstein D, Moalem-Taylor G (2017) Characterisation of immune and neuroinflammatory changes associated with chemotherapy-induced peripheral neuropathy. PLoS One 12:e0170814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Robinson CR, Zhang H, Dougherty PM (2014) Astrocytes, but not microglia, are activated in oxaliplatin and bortezomib-induced peripheral neuropathy in the rat. Neuroscience. https://doi.org/10.1016/j.neuroscience.2014.05.051

  85. Warwick RA, Hanani M (2013) The contribution of satellite glial cells to chemotherapy-induced neuropathic pain. Eur J Pain (United Kingdom). https://doi.org/10.1002/j.1532-2149.2012.00219.x

  86. Peters CM, Jimenez-Andrade JM, Kuskowski MA, Ghilardi JR, Mantyh PW (2007) An evolving cellular pathology occurs in dorsal root ganglia, peripheral nerve and spinal cord following intravenous administration of paclitaxel in the rat. Brain Res 1168:46–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Boyette-Davis J, Xin W, Zhang H, Dougherty PM (2011) Intraepidermal nerve fiber loss corresponds to the development of taxol-induced hyperalgesia and can be prevented by treatment with minocycline. Pain 152:308–313

    Article  CAS  PubMed  Google Scholar 

  88. Boyette-Davis J, Dougherty PM (2011) Protection against oxaliplatin-induced mechanical hyperalgesia and intraepidermal nerve fiber loss by minocycline. Exp Neurol 229:353–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pachman DR, Dockter T, Zekan PJ et al (2017) A pilot study of minocycline for the prevention of paclitaxel-associated neuropathy: ACCRU study RU221408I. Support Care Cancer. https://doi.org/10.1007/s00520-017-3760-2

  90. Wang XS, Shi Q, Bhadkamkar NA, Cleeland CS, Garcia-Gonzalez A, Aguilar JR, Heijnen C, Eng C (2019) Minocycline for symptom reduction during oxaliplatin-based chemotherapy for colorectal cancer: a phase II randomized clinical trial. J Pain Symptom Manage. https://doi.org/10.1016/j.jpainsymman.2019.06.018

  91. Wangzhou A, McIlvried LA, Paige C et al (2020) Pharmacological target-focused transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia. Pain. https://doi.org/10.1097/j.pain.0000000000001866

  92. Madore C, Yin Z, Leibowitz J, Butovsky O (2020) Microglia, lifestyle stress, and neurodegeneration. Immunity. https://doi.org/10.1016/j.immuni.2019.12.003

  93. Davies AJ, Rinaldi S, Costigan M, Oh SB (2020) Cytotoxic immunity in peripheral nerve injury and pain. Front Neurosci. https://doi.org/10.3389/fnins.2020.00142

  94. Duggett NA, Griffiths LA, Flatters SJL (2017) Paclitaxel-induced painful neuropathy is associated with changes in mitochondrial bioenergetics, glycolysis, and an energy deficit in dorsal root ganglia neurons. Pain. https://doi.org/10.1097/j.pain.0000000000000939

  95. Di Marzo V (2018) New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov 17:623–639

    Article  PubMed  CAS  Google Scholar 

  96. Blanton HL, Brelsfoard J, DeTurk N, Pruitt K, Narasimhan M, Morgan DJ, Guindon J (2019) Cannabinoids: current and future options to treat chronic and chemotherapy-induced neuropathic pain. Drugs 79:969–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. O’Hearn S, Diaz P, Wan BA, DeAngelis C, Lao N, Malek L, Chow E, Blake A (2017) Modulating the endocannabinoid pathway as treatment for peripheral neuropathic pain: a selected review of preclinical studies. Ann Palliat Med 6:S209–S214

    Article  PubMed  Google Scholar 

  98. Maccarrone M, Bab I, Bíró T et al (2015) Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol Sci 36:277–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Crippa JA, Guimarães FS, Campos AC, Zuardi AW (2018) Translational investigation of the therapeutic potential of cannabidiol (CBD): toward a new age. Front Immunol 9:2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Turcotte C, Chouinard F, Lefebvre JS, Flamand N (2015) Regulation of inflammation by cannabinoids, the endocannabinoids 2-arachidonoyl-glycerol and arachidonoyl-ethanolamide, and their metabolites. J Leukoc Biol 97:1049–1070

    Article  CAS  PubMed  Google Scholar 

  101. Kozela E, Juknat A, Vogel Z (2017) Modulation of astrocyte activity by cannabidiol, a nonpsychoactive cannabinoid. Int J Mol Sci 18:1669

    Article  PubMed Central  CAS  Google Scholar 

  102. Perez M, Benitez SU, Cartarozzi LP, Del Bel E, Guimarães FS, Oliveira ALR (2013) Neuroprotection and reduction of glial reaction by cannabidiol treatment after sciatic nerve transection in neonatal rats. Eur J Neurosci 38:3424–3434

    Article  PubMed  Google Scholar 

  103. dos-Santos-Pereira M, Guimarães FS, Del-Bel E, Raisman-Vozari R, Michel PP (2020) Cannabidiol prevents LPS-induced microglial inflammation by inhibiting ROS/NF-κB-dependent signaling and glucose consumption. Glia 68:561–573

    Article  PubMed  Google Scholar 

  104. Rahn EJ, Deng L, Thakur GA, Vemuri K, Zvonok AM, Lai YY, Makriyannis A, Hohmann AG (2014) Prophylactic cannabinoid administration blocks the development of paclitaxel-induced neuropathic nociception during analgesic treatment and following cessation of drug delivery. Mol Pain 10:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Naguib M, Xu JJ, Diaz P, Brown DL, Cogdell D, Bie B, Hu J, Craig S, Hittelman WN (2012) Prevention of paclitaxel-induced neuropathy through activation of the central cannabinoid type 2 receptor system. Anesth Analg 114:1104–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. King KM, Myers AM, Soroka-Monzo AJ, Tuma RF, Tallarida RJ, Walker EA, Ward SJ (2017) Single and combined effects of Δ(9)-tetrahydrocannabinol and cannabidiol in a mouse model of chemotherapy-induced neuropathic pain. Br J Pharmacol 174:2832–2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ward SJ, Ramirez MD, Neelakantan H, Walker EA (2011) Cannabidiol prevents the development of cold and mechanical allodynia in paclitaxel-treated female C57Bl6 mice. Anesth Analg 113:947–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Juknat A, Gao F, Coppola G, Vogel Z, Kozela E (2019) MiRNA expression profiles and molecular networks in resting and LPS-activated BV-2 microglia-Effect of cannabinoids. PLoS One. https://doi.org/10.1371/journal.pone.021203

  109. Carrier EJ, Auchampach JA, Hillard CJ (2006) Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.0511232103

  110. Turner SE, Williams CM, Iversen L, Whalley BJ (2017) Molecular pharmacology of phytocannabinoids. Prog Chem Org Nat Prod. https://doi.org/10.1007/978-3-319-45541-9_3

  111. Janes K, Wahlman C, Little JW, Doyle T, Tosh DK, Jacobson KA, Salvemini D (2015) Spinal neuroimmune activation is independent of T-cell infiltration and attenuated by A3 adenosine receptor agonists in a model of oxaliplatin-induced peripheral neuropathy. Brain Behav Immun 44:91–99

    Article  CAS  PubMed  Google Scholar 

  112. Labra VC, Santibáñez CA, Gajardo-Gómez R, Díaz EF, Gómez GI, Orellana JA (2018) The neuroglial dialog between cannabinoids and hemichannels. Front Mol Neurosci 11:1–17

    Article  CAS  Google Scholar 

  113. Vázquez C, Tolón RM, Pazos MR, Moreno M, Koester EC, Cravatt BF, Hillard CJ, Romero J (2015) Endocannabinoids regulate the activity of astrocytic hemichannels and the microglial response against an injury: in vivo studies. Neurobiol Dis 79:41–50

    Article  PubMed  CAS  Google Scholar 

  114. Retamal MA, Riquelme MA, Stehberg J, Alcayaga J (2017) Connexin43 hemichannels in satellite glial cells, can they influence sensory neuron activity? Front Mol Neurosci 10:1–9

    Article  CAS  Google Scholar 

  115. Yoon S-Y, Robinson CR, Zhang H, Dougherty PM (2013) Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity. J Pain 14:205–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chesney E, Oliver D, Green A, Sovi S, Wilson J, Englund A, Freeman TP, McGuire P (2020) Adverse effects of cannabidiol: a systematic review and meta-analysis of randomized clinical trials. Neuropsychopharmacology. https://doi.org/10.1038/s41386-020-0667-2

  117. Haberberger RV, Barry C, Dominguez N, Matusica D (2019) Human dorsal root ganglia. Front Cell Neurosci. https://doi.org/10.3389/fncel.2019.00271

  118. Misgeld T, Schwarz TL (2017) Mitostasis in neurons: maintaining mitochondria in an extended cellular architecture. Neuron. https://doi.org/10.1016/j.neuron.2017.09.055

  119. Schloss JM, Colosimo M, Airey C, Masci PP, Linnane AW, Vitetta L (2013) Nutraceuticals and chemotherapy induced peripheral neuropathy (CIPN): asystematic review. Clin Nutr 32:888–893

    Article  CAS  PubMed  Google Scholar 

  120. Hershman DL, Lacchetti C, Dworkin RH et al (2014) Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. https://doi.org/10.1200/JCO.2013.54.0914

  121. Fehrenbacher JC, Guo C, Kelley MR, Vasko MR (2017) DNA damage mediates changes in neuronal sensitivity induced by the inflammatory mediators, MCP-1 and LPS, and can be reversed by enhancing the DNA repair function of APE1. Neuroscience. https://doi.org/10.1016/j.neuroscience.2017.09.039

  122. Baek H, Lim CS, Byun HS et al (2016) The anti-inflammatory role of extranuclear apurinic/apyrimidinic endonuclease 1/redox effector factor-1 in reactive astrocytes. Mol Brain. https://doi.org/10.1186/s13041-016-0280-9

  123. Kelley MR, Messmann RA, Fehrenbacher J (2018) Novel first-in-class small molecule targeting APE1/Ref-1 to prevent and treat chemotherapy-induced peripheral neuropathy (CIPN). J Clin Oncol 36:229

    Article  Google Scholar 

  124. Burgos E, Gómez-Nicola D, Pascual D, Martín MI, Nieto-Sampedro M, Goicoechea C (2012) Cannabinoid agonist WIN 55,212-2 prevents the development of paclitaxel-induced peripheral neuropathy in rats. Possible involvement of spinal glial cells. Eur J Pharmacol 682:62–72

    Article  CAS  PubMed  Google Scholar 

  125. Xu JJ, Diaz P, Bie B, Astruc-Diaz F, Wu J, Yang H, Brown DL, Naguib M (2014) Spinal gene expression profiling and pathways analysis of a CB2 agonist (MDA7)-targeted prevention of paclitaxel-induced neuropathy. Neuroscience 260:185–194

    Article  CAS  PubMed  Google Scholar 

  126. Ward SJ, McAllister SD, Kawamura R, Murase R, Neelakantan H, Walker EA (2014) Cannabidiol inhibits paclitaxel-induced neuropathic pain through 5-HT(1A) receptors without diminishing nervous system function or chemotherapy efficacy. Br J Pharmacol 171:636–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wu J, Hocevar M, Bie B, Foss JF, Naguib M (2019) Cannabinoid type 2 receptor system modulates paclitaxel-induced microglial dysregulation and central sensitization in rats. J Pain. https://doi.org/10.1016/j.jpain.2018.10.007

  128. Wang W, Xiang P, Chew WS et al (2020) Activation of sphingosine 1-phosphate receptor 2 attenuates chemotherapy-induced neuropathy. J Biol Chem 295:1143–1152

    Article  PubMed  Google Scholar 

  129. Chua KC, Xiong C, Ho C et al (2020) Genome-wide meta-analysis validates a roles for s1pr1 in microtubule targeting agent-induced sensory peripheral neuropathy. Clin Pharmacol Ther 1–10

    Google Scholar 

  130. Tonello R, Lee SH, Berta T (2019) Monoclonal antibody targeting the matrix metalloproteinase 9 prevents and reverses paclitaxel-induced peripheral neuropathy in mice. J Pain. https://doi.org/10.1016/j.jpain.2018.11.003

  131. Kober KM, Olshen A, Conley YP et al (2018) Expression of mitochondrial dysfunction-related genes and pathways in paclitaxel-induced peripheral neuropathy in breast cancer survivors. Mol Pain. https://doi.org/10.1177/1744806918816462

  132. Broyl A, Corthals SL, Jongen JLM et al (2010) Mechanisms of peripheral neuropathy associated with bortezomib and vincristine in patients with newly diagnosed multiple myeloma: a prospective analysis of data from the HOVON-65/GMMG-HD4 trial. Lancet Oncol. https://doi.org/10.1016/S1470-2045(10)70206-0

  133. Cliff J, Jorgensen AL, Lord R, Azam F, Cossar L, Carr DF, Pirmohamed M (2017) The molecular genetics of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Crit Rev Oncol Hematol. https://doi.org/10.1016/j.critrevonc.2017.09.009

  134. English K, Shepherd A, Uzor NE, Trinh R, Kavelaars A, Heijnen CJ (2020) Astrocytes rescue neuronal health after cisplatin treatment through mitochondrial transfer. Acta Neuropathol Commun 8:1–14

    Article  CAS  Google Scholar 

  135. Boukelmoune N, Chiu GS, Kavelaars A, Heijnen CJ (2018) Mitochondrial transfer from mesenchymal stem cells to neural stem cells protects against the neurotoxic effects of cisplatin. Acta Neuropathol Commun. https://doi.org/10.1186/s40478-018-0644-8

  136. Maj MA, Ma J, Krukowski KN, Kavelaars A, Heijnen CJ (2017) Inhibition of mitochondrial p53 accumulation by PFT-μ prevents cisplatin-induced peripheral neuropathy. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2017.00108

  137. Houck AL, Seddighi S, Driver JA (2018) At the crossroads between neurodegeneration and cancer: a review of overlapping biology and its implications. Curr Aging Sci. https://doi.org/10.2174/1874609811666180223154436

  138. Rodkin S, Khaitin A, Pitinova M, Dzreyan V, Guzenko V, Rudkovskii M, Sharifulina S, Uzdensky A (2020) The localization of p53 in the crayfish mechanoreceptor neurons and its role in axotomy-induced death of satellite glial cells remote from the axon transection site. J Mol Neurosci. https://doi.org/10.1007/s12031-019-01453-2

  139. Turnquist C, Horikawa I, Foran E, Major EO, Vojtesek B, Lane DP, Lu X, Harris BT, Harris CC (2016) P53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration. Cell Death Differ. https://doi.org/10.1038/cdd.2016.37

  140. Caponegro MD, Torres LF, Rastegar C, Rath N, Anderson ME, Robinson JK, Tsirka SE (2019) Pifithrin-μ modulates microglial activation and promotes histological recovery following spinal cord injury. CNS Neurosci Ther. https://doi.org/10.1111/cns.13000

  141. Aloi MS, Su W, Garden GA (2015) The p53 transcriptional network influences microglia behavior and neuroinflammation. Crit Rev Immunol 35:401–415

    Article  PubMed  PubMed Central  Google Scholar 

  142. Loreto A, Hill CS, Hewitt VL et al (2020) Mitochondrial impairment activates the Wallerian pathway through depletion of NMNAT2 leading to SARM1-dependent axon degeneration. Neurobiol Dis 134:104678

    Article  CAS  PubMed  Google Scholar 

  143. Molassiotis A, Cheng HL, Lopez V et al (2019) Are we mis-estimating chemotherapy-induced peripheral neuropathy? Analysis of assessment methodologies from a prospective, multinational, longitudinal cohort study of patients receiving neurotoxic chemotherapy. BMC Cancer 19:1–19

    Article  Google Scholar 

  144. Abraira VE, Ginty DD (2013) The sensory neurons of touch. Neuron 79:618–639

    Article  CAS  PubMed  Google Scholar 

  145. Gornstein EL, Schwarz TL (2017) Neurotoxic mechanisms of paclitaxel are local to the distal axon and independent of transport defects. Exp Neurol 288:153–166

    Article  CAS  PubMed  Google Scholar 

  146. Hahn I, Voelzmann A, Liew YT, Costa-Gomes B, Prokop A (2019) The model of local axon homeostasis—explaining the role and regulation of microtubule bundles in axon maintenance and pathology. Neural Dev 14:1–28

    Article  Google Scholar 

  147. Bennett GJ, Liu GK, Xiao WH, Jin HW, Siau C (2011) Terminal arbor degeneration—a novel lesion produced by the antineoplastic agent paclitaxel. Eur J Neurosci 33:1667–1676

    Article  PubMed  PubMed Central  Google Scholar 

  148. Tasnim A, Rammelkamp Z, Slusher AB, Wozniak K, Slusher BS, Farah MH (2016) Paclitaxel causes degeneration of both central and peripheral axon branches of dorsal root ganglia in mice. BMC Neurosci 17:1–8

    Article  CAS  Google Scholar 

  149. Öztürk Z, O’Kane CJ, Pérez-Moreno JJ (2020) Axonal endoplasmic reticulum dynamics and its roles in neurodegeneration. Front Neurosci 14:1–33

    Article  Google Scholar 

  150. Malacrida A, Meregalli C, Rodriguez-Menendez V, Nicolini G (2019) Chemotherapy-induced peripheral neuropathy and changes in cytoskeleton. Int J Mol Sci. https://doi.org/10.3390/ijms20092287

  151. Boehmerle W, Huehnchen P, Peruzzaro S, Balkaya M, Endres M (2014) Electrophysiological, behavioral and histological characterization of paclitaxel, cisplatin, vincristine and bortezomib-induced neuropathy in C57Bl/6 mice. Sci Rep. https://doi.org/10.1038/srep06370

  152. Burakgazi AZ, Messersmith W, Vaidya D, Hauer P, Hoke A, Polydefkis M (2011) Longitudinal assessment of oxaliplatin-induced neuropathy. Neurology 77:980–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. El-Fatatry BM, Ibrahim OM, Hussien FZ, Mostafa TM (2018) Role of metformin in oxaliplatin-induced peripheral neuropathy in patients with stage III colorectal cancer: randomized, controlled study. Int J Colorectal Dis. https://doi.org/10.1007/s00384-018-3104-9

  154. Inyang KE, McDougal TA, Ramirez ED, Williams M, Laumet G, Kavelaars A, Heijnen CJ, Burton M, Dussor G, Price TJ (2019) Alleviation of paclitaxel-induced mechanical hypersensitivity and hyperalgesic priming with AMPK activators in male and female mice. Neurobiol Pain. https://doi.org/10.1016/j.ynpai.2019.100037

  155. Karlsson JOG, Ignarro LJ, Lundström I, Jynge P, Almén T (2015) Calmangafodipir [Ca4Mn(DPDP)5], mangafodipir (MnDPDP) and MnPLED with special reference to their SOD mimetic and therapeutic properties. Drug Discov Today. https://doi.org/10.1016/j.drudis.2014.11.008

  156. Glimelius B, Manojlovic N, Pfeiffer P et al (2018) Persistent prevention of oxaliplatin-induced peripheral neuropathy using calmangafodipir (PledOx®): a placebo-controlled randomised phase II study (PLIANT). Acta Oncol (Madr). https://doi.org/10.1080/0284186X.2017.1398836

  157. Krukowski K, Nijboer CH, Huo X, Kavelaars A, Heijnen CJ (2015) Prevention of chemotherapy-induced peripheral neuropathy by the small-molecule inhibitor pifithrin-μ. Pain. https://doi.org/10.1097/j.pain.0000000000000290

  158. Krukowski K, Ma J, Golonzhka O, Laumet GO, Gutti T, Van Duzer JH, Mazitschek R, Jarpe MB, Heijnen CJ, Kavelaars A (2017) HDAC6 inhibition effectively reverses chemotherapy-induced peripheral neuropathy. Pain. https://doi.org/10.1097/j.pain.0000000000000893

  159. Ma J, Trinh RT, Mahant ID, Peng B, Matthias P, Heijnen CJ, Kavelaars A (2019) Cell-specific role of histone deacetylase 6 in chemotherapy-induced mechanical allodynia and loss of intraepidermal nerve fibers. Pain 160:2877–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Nieto FR, Cendán CM, Cañizares FJ, Cubero MA, Vela JM, Fernández-Segura E, Baeyens JM (2014) Genetic inactivation and pharmacological blockade of sigma-1 receptors prevent paclitaxel-induced sensory-nerve mitochondrial abnormalities and neuropathic pain in mice. Mol Pain. https://doi.org/10.1186/1744-8069-10-11

  161. Bruna J, Videla S, Argyriou AA et al (2018) Efficacy of a novel sigma-1 receptor antagonist for oxaliplatin-induced neuropathy: a randomized, double-blind, placebo-controlled phase IIa clinical trial. Neurotherapeutics. https://doi.org/10.1007/s13311-017-0572-5

  162. Xiao WH, Zheng FY, Bennett GJ, Bordet T, Pruss RM (2009) Olesoxime (cholest-4-en-3-one, oxime): analgesic and neuroprotective effects in a rat model of painful peripheral neuropathy produced by the chemotherapeutic agent, paclitaxel. Pain 147:202–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Rovini A (2019) Tubulin-VDAC interaction: molecular basis for mitochondrial dysfunction in chemotherapy-induced peripheral neuropathy. Front Physiol. https://doi.org/10.3389/fphys.2019.00671

  164. Rosell AL, Neukomm LJ (2019) Axon death signalling in Wallerian degeneration among species and in disease. Open Biol. https://doi.org/10.1098/rsob.190118

  165. Tian W, Czopka T, López-Schier H (2020) Systemic loss of Sarm1 protects Schwann cells from chemotoxicity by delaying axon degeneration. Commun Biol 3:49

    Article  PubMed  PubMed Central  Google Scholar 

  166. Geisler S, Doan RA, Strickland A, Huang X, Milbrandt J, DiAntonio A (2016) Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice. Brain. https://doi.org/10.1093/brain/aww251

  167. Liu HW, Smith CB, Schmidt MS, Cambronne XA, Cohen MS, Migaud ME, Brenner C, Goodman RH (2018) Pharmacological bypass of NAD+ salvage pathway protects neurons from chemotherapy-induced degeneration. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1809392115

  168. DiAntonio A (2019) Axon degeneration. Pain 160:S17–S22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Krauss R, Bosanac T, Devraj R, Engber T, Hughes RO (2020) Axons matter: the promise of treating neurodegenerative disorders by targeting SARM1-mediated axonal degeneration. Trends Pharmacol Sci 41:281–293

    Article  CAS  PubMed  Google Scholar 

  170. Chine VB, Au NPB, Kumar G, Ma CHE (2019) Targeting axon integrity to prevent chemotherapy-induced peripheral neuropathy. Mol Neurobiol 56:3244–3259

    Article  CAS  PubMed  Google Scholar 

  171. Geisler S, Doan RA, Cheng GC, Cetinkaya-Fisgin A, Huang SX, Höke A, Milbrandt J, DiAntonio A (2019) Vincristine and bortezomib use distinct upstream mechanisms to activate a common SARM1-dependent axon degeneration program. JCI Insight 4:1–17

    Article  Google Scholar 

  172. Karney-Grobe S, Russo A, Frey E, Milbrandt J, DiAntonio A (2018) HSP90 is a chaperone for DLK and is required for axon injury signaling. Proc Natl Acad Sci U S A 115:E9899–E9908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Summers DW, DiAntonio A, Milbrandt J (2014) Mitochondrial dysfunction induces Sarm1-dependent cell death in sensory neurons. J Neurosci 34:9338–9350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Sporny M, Guez-Haddad J, Lebendiker M, Ulisse V, Volf A, Mim C, Isupov MN, Opatowsky Y (2019) Structural evidence for an octameric ring arrangement of SARM1. J Mol Biol. https://doi.org/10.1016/j.jmb.2019.06.030

  175. Loring HS, Thompson PR (2020) Emergence of SARM1 as a potential therapeutic target for Wallerian-type diseases. Cell Chem Biol 27:1–13

    Article  CAS  PubMed  Google Scholar 

  176. Miller BR, Press C, Daniels RW, Sasaki Y, Milbrandt J, Diantonio A (2009) A dual leucine kinase-dependent axon self-destruction program promotes Wallerian degeneration. Nat Neurosci. https://doi.org/10.1038/nn.2290

  177. Patel S, Cohen F, Dean BJ et al (2015) Discovery of dual leucine zipper kinase (DLK, MAP3K12) inhibitors with activity in neurodegeneration models. J Med Chem. https://doi.org/10.1021/jm5013984

  178. Schaper T, Rezai M, Petruschke G, Gross B, Franzmann L, Darsow M (2019) Efficiency of controlled cryotherapy in prevention of chemotherapy induced peripheral neuropathy (CIPN). Ann Oncol 30:718–746

    Article  Google Scholar 

  179. Sundar R, Bandla A, Tan SSH et al (2017) Limb hypothermia for preventing paclitaxel-induced peripheral neuropathy in breast cancer patients: a pilot study. Front Oncol 6:1–10

    Article  Google Scholar 

  180. Hanai A, Ishiguro H, Sozu T et al (2018) Effects of cryotherapy on objective and subjective symptoms of paclitaxel-induced neuropathy: prospective self-controlled trial. J Natl Cancer Inst 110:141–148

    Article  CAS  PubMed  Google Scholar 

  181. Chine VB, Au NPB, Ma CHE (2019) Therapeutic benefits of maintaining mitochondrial integrity and calcium homeostasis by forced expression of Hsp27 in chemotherapy-induced peripheral neuropathy. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2019.104492

  182. Zhu J, Chen W, Zhou C, Reed N, Höke A (2013) Ethoxyquin provides neuroprotection via HSP90 to ameliorate chemotherapy-induced peripheral neuropathy. J Peripher Nerv Syst. https://doi.org/10.1111/jns5.12025

  183. Zhu J, Carozzi VA, Reed N, Mi R, Marmiroli P, Cavaletti G, Hoke A (2016) Ethoxyquin provides neuroprotection against cisplatin-induced neurotoxicity. Sci Rep. https://doi.org/10.1038/srep28861

  184. Cirrincione AM, Pellegrini AD, Dominy JR, Benjamin ME, Utkina-Sosunova I, Lotti F, Jergova S, Sagen J, Rieger S (2020) Paclitaxel-induced peripheral neuropathy is caused by epidermal ROS and mitochondrial damage through conserved MMP-13 activation. Sci Rep 10:1–12

    Article  CAS  Google Scholar 

  185. Zhu Y, Yang J, Jiao S, Ji T (2013) Ganglioside-monosialic acid (GM1) prevents oxaliplatin-induced peripheral neurotoxicity in patients with gastrointestinal tumors. World J Surg Oncol 11:1–7

    Article  CAS  Google Scholar 

  186. Chen XF, Wang R, Yin YM, Røe OD, Li J, Zhu LJ, Guo RH, Wu T, Shu YQ (2012) The effect of monosialotetrahexosylganglioside (GM1) in prevention of oxaliplatin induced neurotoxicity: a retrospective study. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2012.01.002

  187. Su Y, Huang J, Wang S et al (2020) The effects of ganglioside-monosialic acid in taxane-induced peripheral neurotoxicity in patients with breast cancer: a randomized trial. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djz086

  188. Wang DS, Wang ZQ, Chen G et al (2020) Phase III randomized, placebo-controlled, double-blind study of monosialotetrahexosylganglioside for the prevention of oxaliplatin-induced peripheral neurotoxicity in stage II/III colorectal cancer. Cancer Med 9:151–159

    Article  CAS  PubMed  Google Scholar 

  189. Kadakia KC, Rozell SA, Butala AA, Loprinzi CL (2014) Supportive cryotherapy: a review from head to toe. J Pain Symptom Manage 47:1100–1115

    Article  PubMed  Google Scholar 

  190. Eckhoff L, Knoop AS, Jensen MB, Ejlertsen B, Ewertz M (2013) Risk of docetaxel-induced peripheral neuropathy among 1,725 Danish patients with early stage breast cancer. Breast Cancer Res Treat 142:109–118

    Article  CAS  PubMed  Google Scholar 

  191. Lissea TS, Middletona LJ, Pellegrinia AD, Martina PB, Spauldinga EL, Lopesa O, Brochua EA, Cartera EV, Waldrona A, Riegera S (2016) Paclitaxel-induced epithelial damage and ectopic MMP-13 expression promotes neurotoxicity in zebrafish. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1525096113

  192. Waldron AL, Schroder PA, Bourgon KL, Bolduc JK, Miller JL, Pellegrini AD, Dubois AL, Blaszkiewicz M, Townsend KL, Rieger S (2018) Oxidative stress-dependent MMP-13 activity underlies glucose neurotoxicity. J Diabetes Complications. https://doi.org/10.1016/j.jdiacomp.2017.11.012

  193. Beh ST, Kuo YM, Chang WSW, Wilder-Smith E, Tsao CH, Tsai CH, Chen LT, De Liao L (2019) Preventive hypothermia as a neuroprotective strategy for paclitaxel-induced peripheral neuropathy. Pain 160:1505–1521

    Article  CAS  PubMed  Google Scholar 

  194. Leblanc AF, Sprowl JA, Alberti P et al (2018) OATP1B2 deficiency protects against paclitaxel-induced neurotoxicity. J Clin Invest 128:816–825

    Article  PubMed  PubMed Central  Google Scholar 

  195. Sprowl JA, Ong SS, Gibson AA et al (2016) A phosphotyrosine switch regulates organic cation transporters. Nat Commun 7:1–11

    Article  CAS  Google Scholar 

  196. Huang KM, Leblanc AF, Uddin ME et al (2020) Neuronal uptake transporters contribute to oxaliplatin neurotoxicity in mice. J Clin Invest. https://doi.org/10.1172/jci136796

  197. Wright SH (2019) Molecular and cellular physiology of organic cation transporter 2. Am J Physiol Ren Physiol 317:F1669–F1679

    Article  CAS  Google Scholar 

  198. Loscalzo J (2011) Systems biology and personalized medicine: a network approach to human disease. Proc Am Thorac Soc 8:196–198

    Article  PubMed  Google Scholar 

  199. Costamagna G, Andreoli L, Corti S, Faravelli I (2019) iPSCs-based neural 3D systems: a multidimensional approach for disease modeling and drug discovery. Cells. https://doi.org/10.3390/cells8111438

  200. Sharma AD, McCoy L, Jacobs E, Willey H, Behn JQ, Nguyen H, Bolon B, Curley JL, Moore MJ (2019) Engineering a 3D functional human peripheral nerve in vitro using the Nerve-on-a-Chip platform. Sci Rep. https://doi.org/10.1038/s41598-019-45407-5

  201. Chukwurah E, Osmundsen A, Davis SW, Lizarraga SB (2019) All together now: modeling the interaction of neural with non-neural systems using organoid models. Front Neurosci. https://doi.org/10.3389/fnins.2019.00582

  202. Nzou G, Wicks RT, VanOstrand NR et al (2020) Multicellular 3D neurovascular unit model for assessing hypoxia and neuroinflammation induced blood-brain barrier dysfunction. Sci Rep. https://doi.org/10.1038/s41598-020-66487-8

  203. Papapetrou EP (2016) Patient-derived induced pluripotent stem cells in cancer research and precision oncology. Nat Med. https://doi.org/10.1038/nm.4238

  204. Romeo-Guitart D, Forés J, Herrando-Grabulosa M et al (2018) Neuroprotective drug for nerve trauma revealed using artificial intelligence. Sci Rep 8:1–15

    Article  CAS  Google Scholar 

  205. Ekins S, Puhl AC, Zorn KM, Lane TR, Russo DP, Klein JJ, Hickey AJ, Clark AM (2019) Exploiting machine learning for end-to-end drug discovery and development. Nat Mater 18:435–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Bloomingdale P, Mager DE (2019) Machine learning models for the prediction of chemotherapy-induced peripheral neuropathy. Pharm Res. https://doi.org/10.1007/s11095-018-2562-7

  207. Chan A, Hertz DL, Morales M et al (2019) Biological predictors of chemotherapy-induced peripheral neuropathy (CIPN): MASCC neurological complications working group overview. Support Care Cancer 27:3729–3737

    Article  PubMed  PubMed Central  Google Scholar 

  208. Crevenna R, Keilani M (2019) Chemotherapy-induced peripheral neuropathy—more high-quality research is needed. Support Care Cancer 27:5–6

    Article  PubMed  Google Scholar 

  209. Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ (2018) Next-generation machine learning for biological networks. Cell 173:1581–1592

    Article  CAS  PubMed  Google Scholar 

  210. Pajares F (2003) The structure of scientific revolutions by Thomas S. Kuhn outline and study guide. Emory University

    Google Scholar 

  211. Rivas AL, Leitner G, Jankowski MD et al (2017) Nature and consequences of biological reductionism for the immunological study of infectious diseases. Front Immunol 8:1–8

    Article  CAS  Google Scholar 

  212. Turnbull L, Hütt MT, Ioannides AA et al (2018) Connectivity and complex systems: learning from a multi-disciplinary perspective. Appl Netw Sci. https://doi.org/10.1007/s41109-018-0067-2

  213. Romeo-Guitart D, Casas C (2019) Network-centric medicine for peripheral nerve injury: treating the whole to boost endogenous mechanisms of neuroprotection and regeneration. Neural Regen Res 14:1122

    Article  PubMed  PubMed Central  Google Scholar 

  214. Romeo-Guitart D, Casas C (2020) NeuroHeal treatment alleviates neuropathic pain and enhances sensory axon regeneration. Cells. https://doi.org/10.3390/cells9040808

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jørn Herrstedt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nielsen, S.W., Herrstedt, J. (2021). Preventive Strategies for Chemotherapy-Induced Peripheral Neuropathy. In: Lustberg, M., Loprinzi, C. (eds) Diagnosis, Management and Emerging Strategies for Chemotherapy-Induced Neuropathy. Springer, Cham. https://doi.org/10.1007/978-3-030-78663-2_4

Download citation

Publish with us

Policies and ethics