Skip to main content

The Pell Equation

  • Chapter
  • First Online:
Quadratic Number Fields

Abstract

We give the classical proof of the solvability of the Pell equation, present a method for computing the fundamental unit, and show how to apply these results to the determination of squares in Lucas sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By this we mean solutions with y≠0.

  2. 2.

    See Exercise 7.1.

  3. 3.

    Strictly speaking, the investigation of Platon’s side and diagonal numbers by Theon may be seen as the only serious investigation of a Pell equation in ancient Greece. Equations of Pell type also figure prominently in the Cattle Problem of Archimedes; it is not known, however, whether there were any attempts at solving this problem before it was discovered by Lessing in 1773.

  4. 4.

    We have derived the rational parametrization of Pell conics in Theorem 3.1.

  5. 5.

    An excellent account of Indian mathematics was given by Kim Plofker [104]. For an investigation of the Indian method of solving the equation Nx 2 + 1 = y 2, see [114].

  6. 6.

    It seems that this principle was given a name rather late (in the twentieth century?); a pigeonhole is a drawer, so the last thing you would like to put there are pigeons.

  7. 7.

    Good sources for the state of the art are [20, 91], and, in particular, [66].

  8. 8.

    This theorem is due to Halter-Koch [48] and the proof presented here to Mollin [95].

  9. 9.

    The class number formula roughly implies that fields with large fundamental units tend to have small class numbers; constructing families of fields with large fundamental units is therefore important with respect to Gauss’s conjecture that there are infinitely many real quadratic number fields with class number 1.

References

  1. N.C. Ankeny, S. Chowla, H. Hasse, On the class-number of the maximal real subfield of a cyclotomic field. J. Reine Angew. Math. 217, 217–220 (1965)

    MathSciNet  MATH  Google Scholar 

  2. E.J. Barbeau, Pell’s Equation (Springer, New York, 2003)

    Book  Google Scholar 

  3. P. Chebyshev, Sur les formes quadratiques. J. Math. Pures Appl. 16, 257–282 (1851)

    Google Scholar 

  4. H. Cohen, A Course in Computational Algebraic Number Theory (Springer, Berlin, Heidelberg, 1993)

    Book  Google Scholar 

  5. J.H.E. Cohn, Eight Diophantine equations, Proc. Lond. Math. Soc. (3) 16, 153–166 (1966); Corr. ibid. (3) 17, 381 (1967)

    Google Scholar 

  6. P.G.L. Dirichlet, Einige Resultate von Untersuchungen über eine Classe homogener Functionen des dritten und der höheren Grade, Ber. Verh. Königl. Preuß. Akad. Wiss. 1841, 280–285 (1841); Werke I, 625–632

    Google Scholar 

  7. K. Girstmair, Kroneckers Lösung der Pellschen Gleichung auf dem Computer. Math. Semesterber. 53, 45–64 (2006)

    Article  MathSciNet  Google Scholar 

  8. F. Halter-Koch, Quadratische Ordnungen mit großer Klassenzahl. J. Numb. Theory 34, 82–94 (1990)

    Article  Google Scholar 

  9. H. Hasse, Über mehrklassige, aber eingeschlechtige reellquadratische Zahlkörper. Elem. Math. 20, 49–59 (1965)

    MathSciNet  MATH  Google Scholar 

  10. M. J. Jacobson, H. C. Williams, Solving the Pell Equation (CMS, New York, 2009)

    Book  Google Scholar 

  11. F. Lemmermeyer, Higher Descent on Pell Conics, I. From Legendre to Selmer, arXiv:math/0311309; II. Two Centuries of Missed Opportunities, math/0311296; III. The First 2-Descent, math/0311310 (2003)

    Google Scholar 

  12. H.W. Lenstra, Solving the Pell equation. Notices Am. Math. Soc. 49, 182–192 (2002)

    MathSciNet  MATH  Google Scholar 

  13. R. Mollin, On the divisor function and class numbers of real quadratic fields. I. Proc. Jpn. Acad. 66, 109–111 (1990)

    MathSciNet  MATH  Google Scholar 

  14. M. Nyberg, Culminating and almost culminating continued fractions (Norwegian). Norsk Mat. Tidskr. 31, 95–99 (1949)

    Google Scholar 

  15. K. Plofker, Mathematics in India (Princeton University Press, Princeton, 2009)

    MATH  Google Scholar 

  16. C.-O. Selenius, Rationale of the Chakravala Process of Jayadeva and Bhaskara II. Hist. Math. 2, 167–184 (1975)

    Article  MathSciNet  Google Scholar 

  17. D. Shanks, On Gauss’s class number problems. Math. Comp. 23, 151–163 (1969)

    MathSciNet  MATH  Google Scholar 

  18. F. von Schafgotsch, Abhandlung über einige Eigenschaften der Prim- und zusammengesestzten Zahlen, Abhandlung der Böhmischen Gesellschaft der Wissenschaften in Prag (1786), pp. 123–159

    Google Scholar 

  19. S. Wagstaff, The Joy of Factoring (AMS, Providence, 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lemmermeyer, F. (2021). The Pell Equation. In: Quadratic Number Fields. Springer Undergraduate Mathematics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-78652-6_7

Download citation

Publish with us

Policies and ethics