Skip to main content

Quadratic Gauss Sums

  • Chapter
  • First Online:
Quadratic Number Fields

Abstract

We introduce Pell forms and show they lead us in a natural way to quadratic Gauss sums. We point out connections to the analytic class number formula and the modularity of elliptic curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See [26].

  2. 2.

    In the theory of complex multiplication there exists something called “the modular polynomial.”

  3. 3.

    I highly recommend the books [4, 5] to everyone interested in learning more about the big picture.

  4. 4.

    See Evink and Helminck [40].

References

  1. A. Ash, R. Gross, Fearless Symmetry. Exposing the Hidden Patterns of Numbers (Princeton University Press, Princeton, 2006)

    Google Scholar 

  2. A. Ash, R. Gross, Elliptic Tales: Curves, Counting, and Number Theory (Princeton University Press, Princeton, 2012)

    Book  Google Scholar 

  3. R. Ayoub, On L-functions. Monatsh. Math. 71, 193–202 (1967)

    Article  MathSciNet  Google Scholar 

  4. H. Cohn, Advanced Number Theory (Dover Publications, New York, 1980); Original: A Second Course in Number Theory (Wiley, New York, 1962)

    Google Scholar 

  5. H. Cohn, A Classical Invitation to Algebraic Numbers and Class Fields, 2nd edn. Universitext (Springer, New York, 1988)

    MATH  Google Scholar 

  6. D. Cox, Why Eisenstein proved the Eisenstein criterion and why Schönemann discovered it first. Am. Math. Monthly 118, 3–21 (2011)

    Article  Google Scholar 

  7. T. Evink, A. Helminck, Tribonacci numbers and primes of the form p = x 2 + 11y 2. Math. Slovaca 69, 521–532 (2019)

    Article  MathSciNet  Google Scholar 

  8. C.F. Gauß, Theorematis fundamentalis in doctrina de residuis quadraticis demonstrationes et amplicationes novae, 1818; Werke II, 47–64

    Google Scholar 

  9. P. Roquette, The Riemann Hypothesis in Characteristic p in Historical Perspective (Springer, Cham, 2018)

    Book  Google Scholar 

  10. W. Scharlau, H. Opolka, Von Fermat bis Minkowski. Eine Vorlesung über Zahlentheorie und ihre Entwicklung (Springer, Berlin, 1980)

    Google Scholar 

  11. D. Zagier, Zetafunktionen und quadratische Körper (Springer, Berlin, Heidelberg, 1981)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lemmermeyer, F. (2021). Quadratic Gauss Sums. In: Quadratic Number Fields. Springer Undergraduate Mathematics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-78652-6_10

Download citation

Publish with us

Policies and ethics