Skip to main content

An Improved CNN Model for Fast Salient Object Detection

  • Conference paper
  • First Online:
Advances in Artificial Intelligence and Security (ICAIS 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1423))

Included in the following conference series:

  • 1252 Accesses

Abstract

In an image, how to quickly and effectively extract the useful regions named target regions in the scene according to the saliency features such as spatial domain, frequency domain etc. for further analysis of salient object detection is one of the challenging topics in the field of image segmentation. Most of the existing salient target detection methods use convolution network to extract high-order semantic features, combine pyramid pooling model to fuse high-order and low-order semantic features, and use Adam or SGD optimizer to optimize the model to obtain the salient object. However, the traditional convolution network model is not optimized for the model parameters, and finally redundant parameters will appear in the model, which will aggravate the training time and practical application detection time of the model. Although SGD is fast, it will fall into a large number of local suboptimal solutions or saddle points in the process of non-convex error function optimization. Adam has better performance, but the speed is slightly slower then t -> ∞ that will not have a good generalization performance. In order to solve the above problems, a new optimization strategy is proposed to compress the model. At the same time, AdaX, an optimizer with SGD speed and Adam performance, is used to optimize the model. Through the test on the open data set DUTS, ESSCD and etc., the proposed optimization model method reduces the parameters of the original model, and also improves the training speed and application detection speed of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koch, C., Poggio, T.: Predicting the visual world: silence is golden. Nat. Neurosci. 2(1), 9–10 (1999)

    Article  Google Scholar 

  2. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.: Saliency detection via graph-based manifold ranking. In: IEEE Conference on Computer Vision and Pattern Recognition 2013. CVPR, pp. 3166–3173. IEEE Computer Society (2013)

    Google Scholar 

  3. Qin, Y., Lu, H.C., Xu, Y.Q.: Saliency detection via cellular automata. In: IEEE Conference on Computer Vision and Pattern Recognition 2015. CVPR, pp. 110–119. IEEE Computer Society (2015)

    Google Scholar 

  4. Hou,X.D., Zhang, L.Q.: Saliency detection: a spectral residual approach. In: IEEE Conference on Computer Vision and Pattern Recognition 2007. CVPR, pp. 17–22. IEEE Computer Society (2007)

    Google Scholar 

  5. Guo, C.L., Ma, Q., Zhang, L.M.: Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In: IEEE Conference on Computer Vision and Pattern Recognition 2008. CVPR, pp. 23–28. IEEE Computer Society (2008)

    Google Scholar 

  6. Guo, C.L., Zhang, L.M.: A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Trans. Image Process. 19(1), 185–198 (2010)

    Article  MathSciNet  Google Scholar 

  7. Liu, T., Sun, J., Zheng, N.N.: Learning to detect a salient object. In: IEEE Conference on Computer Vision and Pattern Recognition 2007. CVPR, pp. 17–22. IEEE Computer Society (2007)

    Google Scholar 

  8. Liu, T., Zheng, N.N., Ding, W.: Video attention: learning to detect a salient object sequence. In: 19th International Conference on Pattern Recognition 2008. ICPR, pp. 1–4. IEEE Computer Society (2008)

    Google Scholar 

  9. Tong, N., Lu, H.C., Ruan, X.: Salient object detection via bootstrap learning. In: IEEE Conference on Computer Vision and Pattern Recognition 2015. CVPR, pp. 1884–1892. IEEE Computer Society (2015)

    Google Scholar 

  10. Xu, L., Cui, G.M., Zheng, C.P.: Fusion method of visible and infrared images based on multi-scale decomposition and saliency region extraction. Laser Optoelectron. Prog. 54(11), 1–3 (2017)

    Google Scholar 

  11. Zhu, W.J., Liang, S., Wei, Y.C.: Saliency optimization from robust background detection. In: IEEE Conference on Computer Vision and Pattern Recognition 2014. CVPR, pp. 2814–2821. IEEE Computer Society (2008)

    Google Scholar 

  12. Wang, T., Borji, A., Zhang, L.: A stagewise refinement model for detecting salient objects in images. In: IEEE Conference on Computer Vision and Pattern Recognition 2017. CVPR, pp. 4039–4048. IEEE Computer Society (2017)

    Google Scholar 

  13. Liu, J.J., Hou, Q., Cheng, M.M.: A simple pooling-based design for real-time salient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition 2019. CVPR, pp. 3917–3926. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  14. Iandola, N.F., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1 MB model size. CoRR abs/1602.07360 (2016)

    Google Scholar 

  15. Li, W., Zhang, Z., Wang, X.: AdaX: Adaptive Gradient Descent with Exponential Long-Term Memory. CoRR abs/2004.09740 (2020)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. ICLR (Poster) (2015)

    Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  18. He, K.M., Zhang X.Y., Ren, S.Q., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition 2016. CVPR, pp. 770–778. IEEE Computer Society (2016)

    Google Scholar 

  19. Lee, G., Tai, Y.W., Kim, J.: Deep saliency with encoded low-level distance map and high-level features. In: IEEE Conference on Computer Vision and Pattern Recognition 2016. CVPR, pp. 660–668. IEEE Computer Society (2016)

    Google Scholar 

  20. Liu, T., et al.: Learning to detect a salient object. IEEE Pattern Anal. Mach. Intell. 33(2), 353–367 (2011)

    Article  Google Scholar 

  21. Li, G.B., Yu, Y.Z.: Visual saliency based on multiscale deep features. In: IEEE Conference on Computer Vision and Pattern Recognition 2015. CVPR, pp. 5455–5463. IEEE Computer Society (2015)

    Google Scholar 

  22. Li, G., Xie, Y., Lin, L., Yu, Y.Z.: Instance-level salient object segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition 2017. CVPR, pp. 247–256. IEEE Computer Society (2017)

    Google Scholar 

  23. Hou, Q.B., Cheng, M.M., Hu, X.W., Borji, A., Tu, Z.W., Torr, P.: Deeply supervised salient object detection with short connections. IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 815–828 (2019)

    Article  Google Scholar 

  24. Yan, Q., Xu, L., Shi, J.P., Jia, J.Y.: Hierarchical saliency detection. In: IEEE Conference on Computer Vision and Pattern Recognition 2013. CVPR, pp. 1155–1162. IEEE Computer Society (2013)

    Google Scholar 

  25. Li, Y., Hou, X.D., Koch, C., Rehg, J.M., Yuille, A.L.: The secrets of salient object segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition 2014. CVPR, pp. 280–287. IEEE Computer Society (2014)

    Google Scholar 

  26. Yang, C., Zhang, L.H., Lu, H.C., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: IEEE Conference on Computer Vision and Pattern Recognition 2013. CVPR, pp. 3166–3173. IEEE Computer Society (2013)

    Google Scholar 

  27. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2015)

    Article  Google Scholar 

  28. Movahedi, V., Elder, J.H.: Design and perceptual validation of performance measures for salient object segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition 2010. CVPR, pp. 49–56. IEEE Computer Society (2010)

    Google Scholar 

  29. Wang, L.J., et al.: Learning to detect salient objects with image-level supervision. In: IEEE Conference on Computer Vision and Pattern Recognition 2017. CVPR, pp. 3796–3805. IEEE Computer Society (2017)

    Google Scholar 

  30. Xie, S.N., Tu, Z.W.: Holistically-nested edge detection. Int. J. Comput. Vision 125(1–3), 3–18 (2015)

    MathSciNet  Google Scholar 

  31. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition 2009. CVPR, pp. 248–255. IEEE Computer Society (2009)

    Google Scholar 

Download references

Acknowledgement

This work is supported by CERNET Innovation Project (NGII20190625).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, B., Wu, Y., Zhang, J., Ma, M. (2021). An Improved CNN Model for Fast Salient Object Detection. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Advances in Artificial Intelligence and Security. ICAIS 2021. Communications in Computer and Information Science, vol 1423. Springer, Cham. https://doi.org/10.1007/978-3-030-78618-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78618-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78617-5

  • Online ISBN: 978-3-030-78618-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics