Skip to main content

Research on Drug Response Prediction Model Based on Big Data

  • Conference paper
  • First Online:
Advances in Artificial Intelligence and Security (ICAIS 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1422))

Included in the following conference series:

  • 1213 Accesses

Abstract

Personalized medicine, also known as precision medicine, refers to a medical model of providing the best treatment plan for a patient according to his or her personal genomic information. The research and practice of personalized medicine have become a hot topic in current medical research, and predicting the response of cell lines to specific drugs is one of the core problems. Using computer algorithms to predict the responses of cell lines to drugs based on huge amounts of existing omics information is currently one focus of bioinformatics. A variety of predictive methods have been proposed. The paper introduces the baseline analysis data, surveys some classical prediction methods and models, and details on the application of matrix decomposition, heterozygous network and deep learning at the drug response prediction. At last, some existing problems and future development trend and prospects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roses, A.D.: Pharmacogenetics in drug discovery and development: a translational per spective. Nat. Rev. Drug Discov. 7(10), 807–817 (2008)

    Article  Google Scholar 

  2. Dugger, S.A., Platt, A., Goldstein, D.B.: Drug development in the era of precision medicine. Nat. Rev. Drug Discov. 17(3), 183–196 (2018)

    Article  Google Scholar 

  3. Bo, H., Yongqian, S., Ping, L., et al.: Precision medicine for oncology: concepts, techniques, and prospects. Tech. Rev. 33(15), 14–21 (2015)

    Google Scholar 

  4. Sebaugh, J.L.: Guidelines for accurate EC50/IC50 estimation. Pharm. Stat. 10(2), 128–134 (2011)

    Article  Google Scholar 

  5. Neubig, R.R., Spedding, M., Kenakin, T., et al.: International union of pharmacology committee on receptor nomenclature and drug classification. XXXVIII. Update on terms and symbols in quantitative pharmacology. Pharm. Rev. 55(4), 597–606 (2003)

    Google Scholar 

  6. Liu, D.Y., Ye, K.Q., Wang, H.Z., et al.: Research progress in the prediction of antitumor drug sensitivity based on functional test. Electron. J. Trans. Med. 004(001), 1–6 (2017)

    Google Scholar 

  7. Alley, M.C., Scudiero, D.A., Monks, A., et al.: Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Can. Res. 48(3), 589–601 (1988)

    Google Scholar 

  8. Shoemaker, R.H.: The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 6(10), 813–823 (2006)

    Article  Google Scholar 

  9. Ali, M., Aittokallio, T.: Machine learning and feature selection for drug response prediction in precision oncology applications. Biophys. Rev. 11(1), 31–39 (2018). https://doi.org/10.1007/s12551-018-0446-z

    Article  Google Scholar 

  10. DeNiz, C., Rahman, R., Zhao, X., et al.: Algorithms for drug sensitivity prediction. Algorithms 9(4), 77 (2016)

    Google Scholar 

  11. Huang, S., Chaudhary, K., Garmire, L.X.: More is better: recent progress in multi-omics data integration methods. Front. Genet. 8, 84 (2017)

    Article  Google Scholar 

  12. Güvenç, P.B., Mamitsuka, H., Kaski, S.: Improving drug response prediction by integrating multiple data sources: matrix factorization, kernel and network-based approaches. Brief. Bioinform. 22(1), 346–359 (2021)

    Article  Google Scholar 

  13. Azuaje, F.: Computational models for predicting drug responses in cancer research. Brief. Bioinform. 18(5), 820–829 (2017)

    Google Scholar 

  14. Wang, L., Li, X., Zhang, L., et al.: Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization. BMC Cancer 17(1), 1–12 (2017)

    Article  Google Scholar 

  15. Emdadi, A., Eslahchi, C.: Dsplmf: a method for cancer drug sensitivity prediction using a novel regularization approach in logistic matrix factorization. Front. Genet. 11, 75 (2020)

    Article  Google Scholar 

  16. Guan, N.N., Zhao, Y., Wang, C.C., et al.: Anticancer drug response prediction in cell lines using weighted graph regularized matrix factorization. Molecular Therapy-Nucleic Acids 17, 164–174 (2019)

    Article  Google Scholar 

  17. Wang, S., Li, J.: Modular within and between score for drug response prediction in cancer cell lines. Mol. Omics 16(1), 31–38 (2020)

    Article  Google Scholar 

  18. Zhang, F., Wang, M., Xi, J., et al.: A novel heterogeneous network-based method for drug response prediction in cancer cell lines. Sci. Rep. 8(1), 1–9 (2018)

    Google Scholar 

  19. Yang, J., Li, A., Li, Y., et al.: A novel approach for drug response prediction in cancer cell lines via network representation learning. Bioinformatics 35(9), 1527–1535 (2019)

    Article  Google Scholar 

  20. Sakellaropoulos, T., Vougas, K., Narang, S., et al.: A deep learning framework for predicting response to therapy in cancer. Cell Rep. 29(11), 3367–3373 (2019)

    Article  Google Scholar 

  21. Sharifi-Noghabi, H., Zolotareva, O., Collins, C.C., et al.: MOLI: multi-omics late integration with deep neural networks for drug response prediction. Bioinformatics 35(14), 501–509 (2019)

    Article  Google Scholar 

  22. Choi, J., Park, S., Ahn, J.: RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance. Sci. Rep. 7(10), 1–11 (2020)

    Google Scholar 

  23. Liu, P., Li, H., Li, S., et al.: Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network. BMC Bioinform. 20(1), 1–14 (2019)

    Article  Google Scholar 

  24. Chiu, Y.C., Chen, H.I.H., Zhang, T., et al.: Predicting drug response of tumors from integrated genomic profiles by deep neural networks. BMC Med. Genomics 12(1), 143–155 (2019)

    Article  Google Scholar 

  25. Suphavilai, C., Bertrand, D., Nagarajan, N.: Predicting cancer drug response using a recommender system. Bioinformatics 34(22), 3907–3914 (2018)

    Article  Google Scholar 

  26. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  27. Baptista, D., Ferreira, P.G., Rocha, M.: Deep learning for drug response prediction in cancer. Brief. Bioinform. 22(1), 360–379 (2021)

    Article  Google Scholar 

  28. Wainberg, M., Merico, D., Delong, A., et al.: Deep learning in biomedicine. Nat. Biotechnol. 36(9), 829–838 (2018)

    Article  Google Scholar 

  29. Menden, M.P., Iorio, F., Garnett, M., et al.: Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS One 8(4), e61318 (2013)

    Google Scholar 

  30. Kim, K.G.: Book review: deep learning. Healthcare Inform. Res. 22(4), 351 (2016)

    Article  Google Scholar 

  31. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. ArXiv Preprint ArXiv 1312, 6114 (2013)

    Google Scholar 

  32. LeCun, Y., Jackel, L.D., Boser, B., et al.: Handwritten digit recognition: applications of neural network chips and automatic learning. IEEE Commun. Mag. 27(11), 41–46 (1989)

    Article  Google Scholar 

  33. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for sequence learning. ArXiv Preprint ArXiv 1506, 00019 (2015)

    Google Scholar 

  34. Lenselink, E.B., TenDijke, N., Bongers, B., et al.: Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set. J. Cheminformatics 9(1), 1–14 (2017)

    Article  Google Scholar 

  35. Koutsoukas, A., Monaghan, K.J., Li, X., et al.: Deep-learning: investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data. J. Cheminformatics 9(1), 1–13 (2017)

    Article  Google Scholar 

  36. Ma, J., Sheridan, R.P., Liaw, A., et al.: Deep neural nets as a method for quantitative structure–activity relationships. J. Chem. Inf. Model. 55(2), 263–274 (2015)

    Article  Google Scholar 

  37. Mayr, A., Klambauer, G., Unterthiner, T., et al.: DeepTox: toxicity prediction using deep learning. Front. Environ. Sci. 3, 80 (2016)

    Article  Google Scholar 

  38. Korotcov, A., Tkachenko, V., Russo, D.P., et al.: Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets. Mol. Pharm. 14(12), 4462–4475 (2017)

    Article  Google Scholar 

  39. Eckert, H., Bajorath, J.: Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov. Today 12(5–6), 225–233 (2007)

    Article  Google Scholar 

  40. Iorio, F., Knijnenburg, T.A., Vis, D.J., et al.: A landscape of pharmacogenomic interactions in cancer. Cell 166(3), 740–754 (2016)

    Article  Google Scholar 

  41. Barrett, T., Wilhite, S.E., Ledoux, P., et al.: NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 41(D1), D991–D995 (2012)

    Article  Google Scholar 

  42. Szklarczyk, D., Franceschini, A., Kuhn, M., et al.: The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39(suppl_1), D561–D568 (2010)

    Google Scholar 

  43. Szklarczyk, D., Gable, A.L., Lyon, D., et al.: STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47(D1), D607–D613 (2019)

    Article  Google Scholar 

  44. Oughtred, R., Chatr-aryamontri, A., Breitkreutz, B.J., et al.: BioGRID: a resource for studying biological interactions in yeast. Cold Spring Harbor Protocols 2016(1), pdb. top080754 (2016)

    Google Scholar 

  45. Tomczak, K., Czerwińska, P., Wiznerowicz, M.: The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contem. Oncol. 19(1A), A68 (2015)

    Google Scholar 

  46. Kanehisa, M., Furumichi, M., Tanabe, M., et al.: KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45(D1), D353–D361 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported by the National Natural Science Foundation of China (Grant No. 61772197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minzhu Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, G., Xie, M. (2021). Research on Drug Response Prediction Model Based on Big Data. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Advances in Artificial Intelligence and Security. ICAIS 2021. Communications in Computer and Information Science, vol 1422. Springer, Cham. https://doi.org/10.1007/978-3-030-78615-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78615-1_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78614-4

  • Online ISBN: 978-3-030-78615-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics