Skip to main content

Experimental Artificial Intelligence Systems in Ophthalmology: An Overview

  • Chapter
  • First Online:
Artificial Intelligence in Ophthalmology

Abstract

Novel artificial intelligence (AI) techniques, which encompass machine and deep learning systems, are providing opportunities to utilize multisource data for the purposes of disease detection, classification and prediction, as well as surgical screening, training and robotics. Automatic image processing and feature extraction from multimodal sources such as visual fields, optical coherence tomography and fundus photos can be combined with patient demographic, environmental and genetic data to achieve identification and grading of ophthalmic diseases and produce progression, and treatment predictions. In the below chapter, encouraging evidence of these emerging methods is described in the realms of surgical, corneal, retinal, and neuro-ophthalmic topics. While researchers have shown theoretical utility of AI systems, the validation of the proposed techniques on real-world external clinical data, a prerequisite to translating the techniques to patient care, is often times lacking or unsuccessful. Despite this, the potential of AI as a diagnostic and screening tool to improve patient care highlights the continued need for experimental approaches to be applied to tasks which have the potential to reduce time to diagnosis and treatment, improve diagnostic accuracy, predict progression of disease for better monitoring and earlier intervention, detect imaging features which may not be noticeable to manual imaging graders, and provide expert-level diagnosis and treatment recommendations to underserved areas. In particular, it can be predicted that AI will play an important role in the post-COVID-19 era by improving the functionality of telemedicine in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103(2):167–75. https://doi.org/10.1136/bjophthalmol-2018-313173.

    Article  PubMed  Google Scholar 

  2. Hogarty DT, Mackey DA, Hewitt AW. Current state and future prospects of artificial intelligence in ophthalmology: a review. Clin Exp Ophthalmol. 2019;47(1):128–39. https://doi.org/10.1111/ceo.13381.

    Article  PubMed  Google Scholar 

  3. Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med. 2019;25:24–9. https://doi.org/10.1038/s41591-018-0316-z.

    Article  CAS  PubMed  Google Scholar 

  4. Treder M, Lauermann JL, Eter N. Deep learning-based detection and classification of geographic atrophy using a deep convolutional neural network classifier. Graefes Arch Clin Exp Ophthalmol. 2018;256(11):2053–60. https://doi.org/10.1007/s00417-018-4098-2.

    Article  CAS  PubMed  Google Scholar 

  5. Brown JM, Campbell JP, Beers A, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks. JAMA Ophthalmol. 2018;136(7):803–10. https://doi.org/10.1001/jamaophthalmol.2018.1934.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–10. https://doi.org/10.1001/jama.2016.17216.

    Article  PubMed  Google Scholar 

  7. Wang M, Pasquale LR, Shen LQ, et al. Reversal of glaucoma hemifield test results and visual field features in glaucoma. Ophthalmology. 2018;125(3):352–60. https://doi.org/10.1016/j.ophtha.2017.09.021.

    Article  PubMed  Google Scholar 

  8. Lee CS, Baughman DM, Lee AY. Deep learning is effective for classifying normal versus age-related macular degeneration OCT images. Ophthalmol Retina. 2017;1(4):322–7.

    Article  Google Scholar 

  9. Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology. 2017;124(7):962–9. https://doi.org/10.1016/j.ophtha.2017.02.008.

    Article  PubMed  Google Scholar 

  10. Schmidt-Erfurth U, Waldstein SM, Klimscha S, et al. Prediction of individual disease conversion in early AMD using artificial intelligence. Invest Ophthalmol Vis Sci. 2018;59(8):3199–208. https://doi.org/10.1167/iovs.18-24106.

    Article  CAS  PubMed  Google Scholar 

  11. Rich WL III, Chiang MF, Lum F, Hancock R, Parke DW II. Performance rates measured in the American Academy of Ophthalmology IRIS© Registry (Intelligent Research in Sight). Ophthalmology. 2018;125(5):782–4. https://doi.org/10.1016/j.ophtha.2017.11.033.

    Article  PubMed  Google Scholar 

  12. Maeda N, Klyce SD, Smolek MK, Thompson HW. Automated keratoconus screening with corneal topography analysis. Invest Ophthalmol Vis Sci. 1994;35(6):2749–57.

    CAS  PubMed  Google Scholar 

  13. Smolek MK, Klyce SD. Current keratoconus detection methods compared with a neural network approach. Invest Ophthalmol Vis Sci. 1997;38(11):2290–9.

    CAS  PubMed  Google Scholar 

  14. de Carvalho LAV, Barbosa MS. Neural networks and statistical analysis for classification of corneal videokeratography maps based on Zernike coefficients: a quantitative comparison. Arquivos Brasileiros de Oftalmologia. 2008;71:337–41. https://doi.org/10.1590/S0004-27492008000300006.

    Article  Google Scholar 

  15. Kovács I, Miháltz K, Kránitz K, et al. Accuracy of machine learning classifiers using bilateral data from a Scheimpflug camera for identifying eyes with preclinical signs of keratoconus. J Cataract Refract Surg. 2016;42(2):275–83. https://doi.org/10.1016/j.jcrs.2015.09.020.

    Article  PubMed  Google Scholar 

  16. Hwang ES, Perez-Straziota CE, Kim SW, Santhiago MR, Randleman JB. Distinguishing highly asymmetric keratoconus eyes using combined Scheimpflug and spectral-domain OCT analysis. Ophthalmology. 2018;125(12):1862–71. https://doi.org/10.1016/j.ophtha.2018.06.020.

    Article  PubMed  Google Scholar 

  17. Ambrósio R Jr, Lopes BT, Faria-Correia F, Salomão MQ, Bühren J, Roberts CJ, Elsheikh A, Vinciguerra R, Vinciguerra P. Integration of Scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg. 2017;33(7):434–43. https://doi.org/10.3928/1081597X-20170426-02.

    Article  PubMed  Google Scholar 

  18. Kamiya K, Ayatsuka Y, Kato Y, et al. Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography: a diagnostic accuracy study. BMJ Open. 2019;9(9):e031313. https://doi.org/10.1136/bmjopen-2019-031313.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Balidis M, Papadopoulou I, Malandris D, Zachariadis Z, Sakellaris D, Vakalis T, et al. Using neural networks to predict the outcome of refractive surgery for myopia. 4Open. 2019;2:29.

    Article  Google Scholar 

  20. Yoo TK, Ryu IH, Lee G, Kim Y, Kim JK, Lee IS, et al. Adopting machine learning to automatically identify candidate patients for corneal refractive surgery. NPJ Digit Med. 2019;2(1):59. https://doi.org/10.1038/s41746-019-0135-8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xie Y, Zhao L, Yang X, et al. Screening candidates for refractive surgery with corneal tomographic-based deep learning. JAMA Ophthalmol. 2020;2020:e200507. https://doi.org/10.1001/jamaophthalmol.2020.0507. [published online ahead of print, 2020 Mar 26].

    Article  Google Scholar 

  22. Yoo TK, Ryu IH, Choi H, et al. Explainable machine learning approach as a tool to understand factors used to select the refractive surgery technique on the expert level. Transl Vis Sci Technol. 2020;9(2):8. https://doi.org/10.1167/tvst.9.2.8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Duncan DD, Shukla OB, West SK, et al. New objective classification system for nuclear opacification. J Opt Soc Am A Opt Image Sci Vis. 1997;14:1197–204.

    Article  CAS  Google Scholar 

  24. Li H, Lim JH, Liu J, et al. An automatic diagnosis system of nuclear cataract using slit-lamp images. IEEE Trans Biomed Eng. 2010;57:1690–8.

    Article  Google Scholar 

  25. Srivastava R, Gao X, Yin F, et al. Automatic nuclear cataract grading using image gradients. J Med Imaging (Bellingham). 2014;1:014502.

    Article  Google Scholar 

  26. Gao X, Lin S, Wong TY. Automatic feature learning to grade nuclear cataracts based on deep learning. IEEE Trans Biomed Eng. 2015;62:2693–701.

    Article  Google Scholar 

  27. Liu X, Jiang J, Zhang K, Long E, Cui J, et al. Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network. PLoS One. 2017;12(3):e0168606.

    Article  Google Scholar 

  28. Zhang H, Niu K, Xiong Y, et al. Automatic cataract grading methods based on deep learning. Comput Methods Programs Biomed. 2019;182:104978.

    Article  Google Scholar 

  29. Reid JE, Eaton E. Artificial intelligence for pediatric ophthalmology. Curr Opin Ophthalmol. 2019;30(5):337–46. https://doi.org/10.1097/ICU.0000000000000593.

    Article  PubMed  Google Scholar 

  30. Hertle RW. Clinical characteristics of surgically treated adult strabismus. J Pediatr Ophthalmol Strabismus. 1998;35(3):138–68.

    Article  CAS  Google Scholar 

  31. Anderson HA, Manny RE, Cotter SA, et al. Effect of examiner experience and technique on the alternate cover test. Optom Vis Sci. 2010;87:168–75.

    Article  Google Scholar 

  32. Hrynchak PK, Herriot C, Irving EL. Comparison of alternate cover test reliability at near in non-strabismus between experienced and novice examiners. Ophthalmic Physiol Opt. 2010;30:304–9.

    Article  Google Scholar 

  33. Yang HK, Seo JM, Hwang JM, Kim KG. Automated analysis of binocular alignment using an infrared camera and selective wavelength filter. Investig Ophthalmol Vis Sci. 2013;54:2733–7.

    Article  Google Scholar 

  34. De Almeid JDS, Silva AC, De Paiva AC, et al. Computational methodology for automatic detection of strabismus in digital images through Hirschberg test. Comput Biol Med. 2012;42:135–46.

    Article  Google Scholar 

  35. Chandna A, Fisher A, Cunninghan I, et al. Pattern recognition of vertical strabismus using an artificial neural network (strabnet). Strabismus. 2009;17(4):131–8.

    Article  Google Scholar 

  36. Kim TY, Seo SS, Kim YJ, et al. A new software for quantitative measurement of strabismus based on digital image. J Korea Multimedia Soc. 2012;15(5):595–605.

    Article  Google Scholar 

  37. Seo MW, Yang HK, Hwang JM, Seo JM. The automated diagnosis of strabismus using an infrared camera. 6th Eur Conf Int Fed Med Biol Eng. 2015;45:142–5.

    Google Scholar 

  38. Khumdat N, Phukpattaranont P, Tengtrisorn S. Development of a computer system for strabismus screening. In: 6th Biomedical Engineering International Conference. IEEE; 2013. p. 1–5.

    Google Scholar 

  39. Valente TL, de Almeida JD, Silva AC, et al. Automatic diagnosis of strabismus in digital videos through cover test. Comput Methods Prog Biomed. 2017;140:295–305.

    Article  Google Scholar 

  40. Quick MW, Boothe RG. A photographic technique for measuring horizontal and vertical eye alignment throughout the field of gaze. Investig Ophthalmol Vis Sci. 1992;33:234–46.

    CAS  Google Scholar 

  41. Model D, Eizenman M. An automated Hirschberg test for infants. IEEE Trans Biomed Eng. 2011;58:103–9.

    Article  Google Scholar 

  42. Chen Z, Fu H, Lo WL, Chi Z. Strabismus recognition using eye-tracking data and convolutional neural networks. J Healthc Eng. 2018;2018:1–9.

    Google Scholar 

  43. Lu J, Feng J, Fan Z, et al. Automated strabismus detection based on deep neural networks for telemedicine applications. 2018. https://deepai.org/publication/automated-strabismus-detection-based-on-deep-neural-networks-for-telemedicine-applications. Accessed 31 Jul 2020.

  44. Fleck BW, Dangata Y. Causes of visual handicap in the Royal Blind School, Edinburgh, 1991–2. Br J Ophthalmol. 1994 May;78(5):421.

    Article  CAS  Google Scholar 

  45. Early Treatment for Retinopathy of Prematurity Cooperative Group, Good WV, Hardy RJ, Dobson V, et al. Final visual acuity results in the early treatment for retinopathy of prematurity study. Archiv Ophthalmol. 2010;128(6):663.

    Google Scholar 

  46. Chan RP, Williams SL, Yonekawa Y, et al. Accuracy of retinopathy of prematurity diagnosis by retinal fellows. Retina (Philadelphia, PA). 2010;30(6):958.

    Article  Google Scholar 

  47. Myung JS, Chan RV, Espiritu MJ, et al. Accuracy of retinopathy of prematurity image-based diagnosis by pediatric ophthalmology fellows: implications for training. J Am Assoc Pediatric Ophthalmol Strabismus. 2011;15(6):573–8.

    Article  Google Scholar 

  48. Ting DS, Peng L, Varadarajan AV, et al. Deep learning in ophthalmology: the technical and clinical considerations. Progr Retinal Eye Res. 2019;72:100759.

    Article  Google Scholar 

  49. Koreen S, Gelman R, Martinez-Perez ME, et al. Evaluation of a computer-based system for plus disease diagnosis in retinopathy of prematurity. Ophthalmology. 2007;114(12):e59–67.

    Article  Google Scholar 

  50. Wilson CM, Wong K, Ng J, Cocker KD, et al. Digital image analysis in retinopathy of prematurity: a comparison of vessel selection methods. J Am Assoc Pediatric Ophthalmol Strabismus. 2012;16(3):223–8.

    Article  Google Scholar 

  51. Abbey AM, Besirli CG, Musch DC, et al. Evaluation of screening for retinopathy of prematurity by ROP tool or a lay reader. Ophthalmology. 2016;123(2):385–90.

    Article  Google Scholar 

  52. Ataer-Cansizoglu E, Bolon-Canedo V, Campbell JP. Computer-based image analysis for plus disease diagnosis in retinopathy of prematurity: performance of the “i-ROP” system and image features associated with expert diagnosis. Transl Vis Sci Technol. 2015;4(6):5.

    Article  Google Scholar 

  53. Redd TK, Campbell JP, Brown JM, et al. Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity. Br J Ophthalmol. 2019;103(5):580–4.

    Article  Google Scholar 

  54. Mao J, Luo Y, Liu L, et al. Automated diagnosis and quantitative analysis of plus disease in retinopathy of prematurity based on deep convolutional neural networks. Acta Ophthalmol. 2020;98(3):e339–45.

    Article  CAS  Google Scholar 

  55. Yang HK, Kim YJ, Sung JY, et al. Efficacy for differentiating nonglaucomatous versus glaucomatous optic neuropathy using deep learning systems. Am J Ophthalmol. 2020;2.

    Google Scholar 

  56. Stunkel L, Newman NJ, Biousse V. Diagnostic error and neuro-ophthalmology. Curr Opin Neurol. 2019;32(1):62–7.

    Article  Google Scholar 

  57. Echegaray S, Zamora G, Yu H, et al. Automated analysis of optic nerve images for detection and staging of papilledema. Invest Ophthalmol Vis Sci. 2011;52:7470–8.

    Article  Google Scholar 

  58. Akbar S, Akram MU, Sharif M, et al. Decision support system for detection of papilledema through fundus retinal images. J Med Syst. 2017;41:66.

    Article  Google Scholar 

  59. Fatima KN, Hassan T, Akram MU, et al. Fully automated diagnosis of papilledema through robust extraction of vascular patterns and ocular pathology from fundus photographs. Biomed Opt Express. 2017;8:1005–24.

    Article  Google Scholar 

  60. Milea D, Najjar RP, Zhubo J, Ting D, Vasseneix C, Xu X, et al. Artificial intelligence to detect papilledema from ocular fundus photographs. N Engl J Med. 2020;382(18):1687–95.

    Article  Google Scholar 

  61. Ahn JM, Kim S, Ahn KS, et al. Accuracy of machine learning for differentiation between optic neuropathies and pseudopapilledema. BMC Ophthalmol. 2019;19:178.

    Article  Google Scholar 

  62. Yang HK, Oh JE, Han SB, et al. Automatic computer-aided analysis of optic & disc pallor in fundus photographs. Acta Ophthalmol (Copenh). 2019;97:e519–25.

    Google Scholar 

  63. Liu TYA, Ting DSW, Yi PH, Wei J, Zhu H, Subramanian PS, et al. Deep learning and transfer learning for optic disc laterality detection: implications for machine learning in neuro-ophthalmology. J Neuroophthalmol. 2020;40(2):178–84.

    Article  Google Scholar 

  64. Kassahun Y, Yu B, Tibebu AT, Stoyanov D, Giannarou S, Metzen JH, et al. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int J CARS. 2016;11(4):553–68. https://doi.org/10.1007/s11548-015-1305-z.

    Article  Google Scholar 

  65. Gottesman O, Johansson F, Komorowski M, Faisal A, Sontag D, Doshi-Velez F, et al. Guidelines for reinforcement learning in healthcare. Nat Med. 2019;25(1):16–8. https://doi.org/10.1038/s41591-018-0310-5.

    Article  CAS  PubMed  Google Scholar 

  66. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9. https://doi.org/10.1038/s41591-018-0316-z.

    Article  CAS  PubMed  Google Scholar 

  67. Abbeel P, Ng AY. Apprenticeship learning via inverse reinforcement learning. In: Proceedings of the twenty-first international conference on Machine learning (ICML ‘04). Banff, AB, Canada: Association for Computing Machinery; 2004. p. 1. https://doi.org/10.1145/1015330.1015430.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri T. Azar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hallak, J.A., Romond, K.E., Azar, D.T. (2021). Experimental Artificial Intelligence Systems in Ophthalmology: An Overview. In: Grzybowski, A. (eds) Artificial Intelligence in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-78601-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78601-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78600-7

  • Online ISBN: 978-3-030-78601-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics