Skip to main content

Artificial Intelligence Using the Eye as a Biomarker of Systemic Risk

  • Chapter
  • First Online:
Artificial Intelligence in Ophthalmology

Abstract

The eye is the sole organ in the body which allows for the direct observation and imaging of the neurological and vascular system. In recent years, researchers have harnessed the noninvasive nature of colour fundus photographs (CFPs) to examine changes in the retina as a possible marker of systemic disease risk. Building on large-scale epidemiological studies that have reported relationships of retinal features such as retinal vascular calibre with systemic diseases, the application of artificial intelligence (AI) technology, specifically in deep learning (DL), on CFPs is advancing new research that focuses on retina-systemic disease relationships. In this relatively new field, current studies fall into two basic groups: 1) cross-sectional studies that use AI-DL technology on CFP to detect or estimate systemic risk factors (e.g., age, blood pressure, smoking) or other biomarkers (e.g., coronary artery calcium); 2) longitudinal studies that use AI-DL technology on CFP to predict the incidence or risk of systemic disease (e.g., cardiovascular event or mortality). The range of systemic factors studied from CFP via AI-DL approaches is reviewed based on these cross-sectional and longitudinal studies, and areas of future research are discussed while acknowledging the limitations that AI-DL on CFP presents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wagner SK, Fu DJ, Faes L, Liu X, Huemer J, Khalid H, et al. Insights into systemic disease through retinal imaging-based oculomics. Transl Vis Sci Technol. 2020;9(2):6.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rim TH, Teo AWJ, Yang HHS, Cheung CY, Wong TY. Retinal vascular signs and cerebrovascular diseases. J Neuroophthalmol. 2020;40(1):44–59.

    Article  PubMed  Google Scholar 

  3. McGeechan K, Liew G, Macaskill P, Irwig L, Klein R, Klein BE, et al. Prediction of incident stroke events based on retinal vessel caliber: a systematic review and individual-participant meta-analysis. Am J Epidemiol. 2009;170(11):1323–32.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wong TY, McIntosh R. Systemic associations of retinal microvascular signs: a review of recent population-based studies. Ophthalmic Physiol Opt. 2005;25(3):195–204.

    Article  PubMed  Google Scholar 

  5. Lim M, Sasongko MB, Ikram MK, Lamoureux E, Wang JJ, Wong TY, et al. Systemic associations of dynamic retinal vessel analysis: a review of current literature. Microcirculation. 2013;20(3):257–68.

    Article  PubMed  Google Scholar 

  6. Sabanayagam C, Lye WK, Klein R, Klein BE, Cotch MF, Wang JJ, et al. Retinal microvascular calibre and risk of diabetes mellitus: a systematic review and participant-level meta-analysis. Diabetologia. 2015;58(11):2476–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim DH, Chaves PHM, Newman AB, Klein R, Sarnak MJ, Newton E, et al. Retinal microvascular signs and disability in the Cardiovascular Health Study. Archiv Ophthalmol (Chicago, Ill: 1960). 2012;130(3):350–6.

    Google Scholar 

  8. Wong TY, McIntosh R. Hypertensive retinopathy signs as risk indicators of cardiovascular morbidity and mortality. Br Med Bull. 2005;73–74:57–70.

    Article  PubMed  Google Scholar 

  9. Kesler A, Vakhapova V, Korczyn AD, Naftaliev E, Neudorfer M. Retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Clin Neurol Neurosurg. 2011;113(7):523–6.

    Article  PubMed  Google Scholar 

  10. Cheung CY, Ong YT, Ikram MK, Ong SY, Li X, Hilal S, et al. Microvascular network alterations in the retina of patients with Alzheimer’s disease. Alzheimers Dement. 2014;10(2):135–42.

    Article  PubMed  Google Scholar 

  11. Feke GT, Hyman BT, Stern RA, Pasquale LR. Retinal blood flow in mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement (Amst). 2015;1(2):144–51.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Frost S, Kanagasingam Y, Sohrabi H, Vignarajan J, Bourgeat P, Salvado O, et al. Retinal vascular biomarkers for early detection and monitoring of Alzheimer’s disease. Transl Psychiatry. 2013;3(2):e233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McGeechan K, Liew G, Macaskill P, Irwig L, Klein R, Klein BEK, et al. Meta-analysis: retinal vessel caliber and risk for coronary heart disease. Ann Intern Med. 2009;151(6):404–13.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cheung CY, Tay WT, Ikram MK, Ong YT, De Silva DA, Chow KY, et al. Retinal microvascular changes and risk of stroke: the Singapore Malay Eye Study. Stroke. 2013;44(9):2402–8.

    Article  PubMed  Google Scholar 

  15. Kawasaki R, Xie J, Cheung N, Lamoureux E, Klein R, Klein BE, et al. Retinal microvascular signs and risk of stroke: the Multi-Ethnic Study of Atherosclerosis (MESA). Stroke. 2012;43(12):3245–51.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wong TY, Klein R, Couper DJ, Cooper LS, Shahar E, Hubbard LD, et al. Retinal microvascular abnormalities and incident stroke: the Atherosclerosis Risk in Communities Study. Lancet. 2001;358(9288):1134–40.

    Article  CAS  PubMed  Google Scholar 

  17. Nguyen TT, Wang JJ, Sharrett AR, Islam FMA, Klein R, Klein BEK, et al. Relationship of retinal vascular caliber with diabetes and retinopathy. The Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care. 2008;31(3):544–9.

    Article  CAS  PubMed  Google Scholar 

  18. Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2(3):158–64.

    Article  PubMed  Google Scholar 

  19. Kim YD, Noh KJ, Byun SJ, Lee S, Kim T, Sunwoo L, et al. Effects of hypertension, diabetes, and smoking on age and sex prediction from retinal fundus images. Scientific Rep. 2020;10(1):4623.

    Article  CAS  Google Scholar 

  20. Rim TH, Lee G, Kim Y, Tham YC, Lee CJ, Baik SJ, et al. Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms. Lancet Digit Health. 2020;2(10):e526–e36.

    Article  PubMed  Google Scholar 

  21. Gerrits N, Elen B, Craenendonck TV, Triantafyllidou D, Petropoulos IN, Malik RA, et al. Age and sex affect deep learning prediction of cardiometabolic risk factors from retinal images. Scientific Rep. 2020;10(1):9432.

    Article  CAS  Google Scholar 

  22. Zhu Z, Shi D, Peng G, Tan Z, Shang X, Hu W, et al. Retinal age as a predictive biomarker for mortality risk. medRxiv. 2020.

    Google Scholar 

  23. Vaghefi E, Yang S, Hill S, Humphrey G, Walker N, Squirrell D. Detection of smoking status from retinal images; a Convolutional Neural Network study. Scientific Rep. 2019;9(1):7180.

    Article  CAS  Google Scholar 

  24. Zhuoting Zhu DS, Peng G, Tan Z, Shang X, Hu W, Liao H, Zhang X, Huang Y, Yu H, Meng W, Wang W, Yang X, He M. Retinal age as a predictive biomarker for mortality risk. medRxiv. 2020.

    Google Scholar 

  25. Kifley A, Liew G, Wang JJ, Kaushik S, Smith W, Wong TY, et al. Long-term effects of smoking on retinal microvascular caliber. Am J Epidemiol. 2007;166(11):1288–97.

    Article  PubMed  Google Scholar 

  26. Ikram MK, de Jong FJ, Vingerling JR, Witteman JC, Hofman A, Breteler MM, et al. Are retinal arteriolar or venular diameters associated with markers for cardiovascular disorders? The Rotterdam Study. Invest Ophthalmol Vis Sci. 2004;45(7):2129–34.

    Article  PubMed  Google Scholar 

  27. Sun C, Wang JJ, Mackey DA, Wong TY. Retinal vascular caliber: systemic, environmental, and genetic associations. Surv Ophthalmol. 2009;54(1):74–95.

    Article  PubMed  Google Scholar 

  28. Kifley A, Wang JJ, Cugati S, Wong TY, Mitchell P. Retinal vascular caliber, diabetes, and retinopathy. Am J Ophthalmol. 2007;143(6):1024–6.

    Article  PubMed  Google Scholar 

  29. Song YM, Sung J, Davey Smith G, Ebrahim S. Body mass index and ischemic and hemorrhagic stroke: a prospective study in Korean men. Stroke. 2004;35(4):831–6.

    Article  PubMed  Google Scholar 

  30. Reeves GK, Pirie K, Beral V, Green J, Spencer E, Bull D. Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study. BMJ. 2007;335(7630):1134.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38.

    Article  PubMed  Google Scholar 

  32. Shah NR, Braverman ER. Measuring adiposity in patients: the utility of body mass index (BMI), percent body fat, and leptin. PLoS One. 2012;7(4):e33308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chiquita S, Rodrigues-Neves AC, Baptista FI, Carecho R, Moreira PI, Castelo-Branco M, et al. The retina as a window or mirror of the brain changes detected in Alzheimer’s disease: critical aspects to unravel. Mol Neurobiol. 2019;56(8):5416–35.

    Article  CAS  PubMed  Google Scholar 

  34. Sadun AA, Borchert M, DeVita E, Hinton DR, Bassi CJ. Assessment of visual impairment in patients with Alzheimer’s disease. Am J Ophthalmol. 1987;104(2):113–20.

    Article  CAS  PubMed  Google Scholar 

  35. Hart NJ, Koronyo Y, Black KL, Koronyo-Hamaoui M. Ocular indicators of Alzheimer’s: exploring disease in the retina. Acta Neuropathol. 2016;132(6):767–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang H, Wei Y, Shi Y, Wright CB, Sun X, Gregori G, et al. Altered macular microvasculature in mild cognitive impairment and Alzheimer disease. J Neuroophthalmol. 2018;38(3):292–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Harju M, Tuominen S, Summanen P, Viitanen M, Pöyhönen M, Nikoskelainen E, et al. Scanning laser Doppler flowmetry shows reduced retinal capillary blood flow in CADASIL. Stroke. 2004;35(11):2449–52.

    Article  PubMed  Google Scholar 

  38. Lim G, Lim ZW, Xu D, Ting DSW, Wong TY, Lee ML, et al. Feature isolation for hypothesis testing in retinal imaging: an ischemic stroke prediction case study. Proc AAAI Conf Artif Intell. 2019;33(01):9510–5.

    Google Scholar 

  39. Dai G, He W, Xu L, Pazo EE, Lin T, Liu S, et al. Exploring the effect of hypertension on retinal microvasculature using deep learning on East Asian population. PLoS One. 2020;15(3):e0230111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang L, Yuan M, An Z, Zhao X, Wu H, Li H, et al. Prediction of hypertension, hyperglycemia and dyslipidemia from retinal fundus photographs via deep learning: a cross-sectional study of chronic diseases in central China. PLoS One. 2020;15(5):e0233166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mitani A, Huang A, Venugopalan S, Corrado GS, Peng L, Webster DR, et al. Detection of anaemia from retinal fundus images via deep learning. Nat Biomed Eng. 2020;4(1):18–27.

    Article  PubMed  Google Scholar 

  42. Boris Babenko AM, Traynis I, Kitade N, Singh P, Maa A, Cuadros J, Corrado GS, Peng L, Webster DR, Varadarajan A, Hammel N, Liu Y. Detecting hidden signs of diabetes in external eye photographs. arXiv. 2020.

    Google Scholar 

  43. Benson J, Estrada T, Burge M, Soliz P, editors. Diabetic peripheral neuropathy risk assessment using digital fundus photographs and machine learning. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 20–24 July; 2020.

    Google Scholar 

  44. Wong TY, Xu D, Ting D, Nusinovici S, Cheung C, Shyong TE, Cheng C-Y, Lee ML, Hsu W, Sabanayagam C. Artificial intelligence deep learning system for predicting chronic kidney disease from retinal images. IOVS. 2019;60:1468.

    Google Scholar 

  45. Sabanayagam C, Xu D, Ting DSW, Nusinovici S, Banu R, Hamzah H, et al. A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations. Lancet Digit Health. 2020;2(6):e295–302.

    Article  PubMed  Google Scholar 

  46. Kang EY HY, Li C, Huang Y, Kuo C, Kang J, Chen K, Lai C, Wu W, Hwang Y. A deep learning model for detecting early renal function impairment using retinal fundus images: model development and validation study. JMIR Med Inf. 2020.

    Google Scholar 

  47. Cheung CY, Xu D, Cheng CY, Sabanayagam C, Tham YC, Yu M, et al. A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre. Nat Biomed Eng. 2020.

    Google Scholar 

  48. Son J, Shin JY, Chun EJ, Jung K-H, Park KH, Park SJ. Predicting high coronary artery calcium score from retinal fundus images with deep learning algorithms. Transl Vis Sci Technol. 2020;9(2):28.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chang J, Ko A, Park SM, Choi S, Kim K, Kim SM, et al. Association of cardiovascular mortality and deep learning-funduscopic atherosclerosis score derived from retinal fundus images. Am J Ophthalmol. 2020;217:121–30.

    Article  PubMed  Google Scholar 

  50. Walsh JB. Hypertensive retinopathy. Description, classification, and prognosis. Ophthalmology. 1982;89(10):1127–31.

    Article  CAS  PubMed  Google Scholar 

  51. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.

    Article  CAS  PubMed  Google Scholar 

  52. Ching T, Zhu X, Garmire LX. Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data. PLoS Comput Biol. 2018;14(4):e1006076.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, Kluger Y. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med Res Methodol. 2018;18(1):24.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gensheimer MF, Narasimhan B. A scalable discrete-time survival model for neural networks. PeerJ. 2019;7:e6257.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien Yin Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tseng, R.M.W.W., Rim, T.H., Cheung, C.Y., Wong, T.Y. (2021). Artificial Intelligence Using the Eye as a Biomarker of Systemic Risk. In: Grzybowski, A. (eds) Artificial Intelligence in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-78601-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78601-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78600-7

  • Online ISBN: 978-3-030-78601-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics