Skip to main content

Artificial Intelligence for Keratoconus Detection and Refractive Surgery Screening

  • Chapter
  • First Online:
Artificial Intelligence in Ophthalmology

Abstract

Artificial intelligence (AI) has been employed in Keratoconus screening for decades. Since the introduction of Neural Networks, the first machine learning techniques used for topographic classification, AI efforts have focused on detection of nascent forms of corneal ectasias (Forme Frustre Keratoconus and Keratoconus Suspects). Parallel to this, the development of new imaging technology has contributed to the increasing keratoconus data sets, improving the accuracy of algorithms. Currently, AI can assist ophthalmologists with automated interpretation of topographic maps, laser vision correction surgery (particularly in custom planning of the procedure), and prevention of iatrogenic ectasias. This area of medicine will continue to grow in complexity along with new technology promising to make its application routine in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burns DM, Johnston FM, Frazer DG, Patterson C, Jackson AJ, et al. Keratoconus: an analysis of corneal asymmetry. Br J Ophthalmol. 2004;88(10):1252–5. https://doi.org/10.1136/bjo.2003.033670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kovács I, Miháltz K, Kránitz K, Juhász É, Takács Á, Dienes L, et al. Accuracy of machine learning classifiers using bilateral data from a Scheimpflug camera for identifying eyes with preclinical signs of keratoconus. J Cataract Refract Surg. 2016;42(2):275–83. https://doi.org/10.1016/j.jcrs.2015.09.020.

    Article  PubMed  Google Scholar 

  3. Jonas JB, Nangia V, Matin A, Kulkarni M, Bhojwani K. Prevalence and associations of keratoconus in rural Maharashtra in Central India: the Central India eye and medical study. Am J Ophthalmol. 2009;148(5):760–5. https://doi.org/10.1016/j.ajo.2009.06.024.

    Article  PubMed  Google Scholar 

  4. Kennedy RH, Bourne WM, Dyer JA. A 48-year clinical and epidemiologic study of keratoconus. Am J Ophthalmol. 1986;101(3):267–73.

    Article  CAS  Google Scholar 

  5. Lin SR, Ladas JG, Bahadur GG, Al-Hashimi S, Pineda R. A review of machine learning techniques for keratoconus detection and refractive surgery screening. Semin Ophthalmol. 2019;34(4):317–26. https://doi.org/10.1080/08820538.2019.1620812.

    Article  PubMed  Google Scholar 

  6. Klyce SD. Chasing the suspect: keratoconus. Br J Ophthalmol. 2009;93(7):845–7. https://doi.org/10.1136/bjo.2008.147371.

    Article  PubMed  Google Scholar 

  7. Ambrósio R, Randleman JB. Screening for ectasia risk: what are we screening for and how should we screen for it? J Refract Surg. 2013;29(4):230–2. https://doi.org/10.3928/1081597X-20130318-01.

    Article  PubMed  Google Scholar 

  8. Lopes BT, Ramos IC, Salomão MQ, Guerra FP, Schallhorn SC, Schallhorn JM, et al. Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence. Am J Ophthalmol. 2018;195:223–32. https://doi.org/10.1016/j.ajo.2018.08.005.

    Article  PubMed  Google Scholar 

  9. Santhiago MR, Smadja D, Gomes BF, Mello GR, Monteiro ML, Wilson SE, et al. Association between the percent tissue altered and post–laser in situ keratomileusis ectasia in eyes with normal preoperative topography. Am J Ophthalmol. 2014;158(1) https://doi.org/10.1016/j.ajo.2014.04.002.

  10. Seiler T, Quurke AW. Iatrogenic keratectasia after LASIK in a case of forme fruste keratoconus. J Cataract Refract Surg. 1998;24(7):1007–9.

    Article  CAS  Google Scholar 

  11. Silverman RH, Urs R, Roychoudhury A, Archer TJ, Gobbe M, Reinstein DZ. Epithelial remodeling as basis for machine-based identification of keratoconus. Invest Ophthalmol Vis Sci. 2014;55(3):1580. https://doi.org/10.1167/iovs.13-12578.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Belin MW, Villavicencio OF, Ambrósio RR. Tomographic parameters for the detection of keratoconus. Eye Contact Lens. 2014;40(6):326–30. https://doi.org/10.1097/ICL.0000000000000077.

    Article  PubMed  Google Scholar 

  13. Amancio DR, Comin CH, Casanova D, Travieso G, Bruno OM, Rodrigues FA, et al. A systematic comparison of supervised classifiers. PLoS One. 2014;9(4) https://doi.org/10.1371/journal.pone.0094137.

  14. Klyce SD. The future of keratoconus screening with artificial intelligence. Ophthalmology. 2018;125(12):1872–3. https://doi.org/10.1016/j.ophtha.2018.08.019.

    Article  PubMed  Google Scholar 

  15. Maeda N, Klyce SD, Smolek MK, Thompson HW. Automated keratoconus screening with corneal topography analysis. Invest Ophthalmol Vis Sci. 1994;35(6):2749–57.

    CAS  PubMed  Google Scholar 

  16. Hwang ES, Perez-Straziota CE, Kim SW, Santhiago MR, Randleman JB. Distinguishing highly asymmetric keratoconus eyes using combined Scheimpflug and spectral-domain OCT analysis. Ophthalmology. 2018;125(12):1862–71. https://doi.org/10.1016/j.ophtha.2018.06.020.

    Article  PubMed  Google Scholar 

  17. Maeda N, Klyce SD, Smolek MK. Neural network classification of corneal topography. Preliminary demonstration. Invest Ophthalmol Vis Sci. 1995;36(7):1327–35.

    CAS  PubMed  Google Scholar 

  18. Smolek MK, Klyce SD. Current keratoconus detection methods compared with a neural network approach. Invest Ophthalmol Vis Sci. 1997;38(11):2290–9.

    CAS  PubMed  Google Scholar 

  19. Smolek MK, Klyce SD. Screening of prior refractive surgery by a wavelet-based neural network. J Cataract Refract Surg. 2001;27(12):1926–31.

    Article  CAS  Google Scholar 

  20. Accardo P, Pensiero S. Neural network-based system for early keratoconus detection from corneal topography. J Biomed Inform. 2002;35(3):151–9.

    Article  Google Scholar 

  21. Carvalho LAVD, Barbosa MS. Neural networks and statistical analysis for classification of corneal videokeratography maps based on Zernike coefficients: a quantitative comparison. Arq Bras Oftalmol. 2008;71(3):337–41.

    Article  Google Scholar 

  22. Smadja D, Touboul D, Cohen A, Doveh E, Santhiago MR, Mello GR, et al. Detection of subclinical keratoconus using an automated decision tree classification. Am J Ophthalmol. 2013;156(2) https://doi.org/10.1016/j.ajo.2013.03.034.

  23. Witten IH, Frank E, Hall MA, Pal CJ. Data mining: practical machine learning tools and techniques. 4th ed. Amsterdam: Elsevier; 2016. p. 7–15.

    Google Scholar 

  24. Souza MB, Medeiros FW, Souza DB, Garcia R, Alves MR. Evaluation of machine learning classifiers in keratoconus detection from orbscan II examinations. Clinics (Sao Paulo). 2010;65(12):1223–8. https://doi.org/10.1590/s1807-59322010001200002.

    Article  Google Scholar 

  25. Hidalgo IR, Rodriguez P, Rozema JJ, Dhubhghaill SN, Zakaria N, Tassignon M-J, et al. Evaluation of a machine-learning classifier for keratoconus detection based on Scheimpflug tomography. Cornea. 2016;35(6):827–32. https://doi.org/10.1097/ICO.0000000000000834.

    Article  Google Scholar 

  26. Yousefi S, Yousefi E, Takahashi H, Hayashi T, Tampo H, Inoda S, et al. Keratoconus severity identification using unsupervised machine learning. PLoS One. 2018;13(11) https://doi.org/10.1371/journal.pone.0205998.

  27. Tharwat A, Gaber T, Ibrahim A, Hassanien AE. Linear discriminant analysis: a detailed tutorial. AI Commun. 2017;30(2):169–90. https://doi.org/10.3233/AIC-170729.

    Article  Google Scholar 

  28. Saad A, Gatinel D. Topographic and tomographic properties of Forme Fruste keratoconus corneas. Invest Ophthalmol Vis Sci. 2010;51(11):5546. https://doi.org/10.1167/iovs.10-5369.

    Article  PubMed  Google Scholar 

  29. Saad A, Gatinel D. Evaluation of total and corneal wavefront high order aberrations for the detection of Forme Fruste keratoconus. Invest Ophthalmol Vis Sci. 2012;53(6):2978. https://doi.org/10.1167/iovs.11-8803.

    Article  PubMed  Google Scholar 

  30. Alexopoulos EC. Introduction to multivariate regression analysis. Hippokratia. 2010;14(Suppl 1):23–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yuan A, Pineda R. Developments in imaging of corneal biomechanics. Int Ophthalmol Clin. 2019;59(4):1–17. https://doi.org/10.1097/IIO.0000000000000286.

    Article  PubMed  Google Scholar 

  32. Gokul A, Vellara HR, Patel DV. Advanced anterior segment imaging in keratoconus: a review. Clin Exp Ophthalmol. 2018;46(2):122–32. https://doi.org/10.1111/ceo.13108.

    Article  PubMed  Google Scholar 

  33. De Stefano VSD, Dupps WJ. Biomechanical diagnostics of the cornea. Int Ophthalmol Clin. 2017;57(3):75–86. https://doi.org/10.1097/IIO.0000000000000172.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Keating A, Roberto Pineda II, Colby K. Corneal cross linking for keratoconus. Semin Ophthalmol. 2010;25(5–6):249–55. https://doi.org/10.3109/08820538.2010.518503.

    Article  PubMed  Google Scholar 

  35. Sightmap & InnovEyes – YouTube [Internet]. [cited 2020 Mar24]. https://www.youtube.com/watch?v=CPcRoH0qcPM

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reyes Luis, J.L., Pineda, R. (2021). Artificial Intelligence for Keratoconus Detection and Refractive Surgery Screening. In: Grzybowski, A. (eds) Artificial Intelligence in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-78601-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78601-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78600-7

  • Online ISBN: 978-3-030-78601-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics