Skip to main content

Artificial Intelligence in Diabetic Retinopathy

  • Chapter
  • First Online:
Artificial Intelligence in Ophthalmology

Abstract

Over the last four decades the number of people living with diabetes has more than quadrupled from 108 million in 1980 to an estimated 422 million in 2014. At the same time diabetes prevalence among adults has almost doubled to 8.5% [1]. Future projections estimate that, by 2035, 592 million people will have diabetes, with the largest rise in low- and middle-income regions [2]. There is no doubt that diabetes constitutes a significant problem for global health and wellbeing. It is a disease that is prevalent all over the world, in the affluent, resource rich countries and much poorer developing countries. Diabetes can cause a number of significant complications, each of them associated with significant morbidity, requiring different, highly qualified medical personnel to diagnose and treat them. This poses a challenge for the local health services which often struggle with either delivering or funding the appropriate care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Klein BEK. Overview of epidemiologic studies of diabetic retinopathy. Ophthalmic Epidemiol. 2007;14(4):179–83.

    Article  Google Scholar 

  2. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103(2):137–49.

    Article  CAS  Google Scholar 

  3. Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis [Internet]. 2015 Sep 30 [cited 2020 Feb 7];2. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4657234/

  4. Romero-Aroca P, de la Riva-Fernandez S, Valls-Mateu A, Sagarra-Alamo R, Moreno-Ribas A, Soler N. Changes observed in diabetic retinopathy: eight-year follow-up of a Spanish population. Br J Ophthalmol. 2016;100(10):1366–71.

    Article  Google Scholar 

  5. Scanlon PH. The English National Screening Programme for diabetic retinopathy 2003–2016. Acta Diabetol. 2017;54(6):515–25.

    Article  Google Scholar 

  6. Pandey R, Morgan MM, Murphy C, Kavanagh H, Acheson R, Cahill M, et al. Irish National Diabetic RetinaScreen Programme: report on five rounds of retinopathy screening and screen-positive referrals.(INDEAR study report no. 1). Br J Ophthalmol. 2020;Published Online First: 17 December 2020.

    Google Scholar 

  7. Nguyen HV, GSW T, Tapp RJ, Mital S, DSW T, Wong HT, et al. Cost-effectiveness of a national telemedicine diabetic retinopathy screening program in Singapore. Ophthalmology. 2016;123(12):2571–80.

    Article  Google Scholar 

  8. Gardner GG, Keating D, Williamson TH, Elliott AT. Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. Br J Ophthalmol. 1996;80(11):940–4.

    Article  CAS  Google Scholar 

  9. Hipwell JH, Strachan F, Olson JA, KC MH, Sharp PF, Forrester JV. Automated detection of microaneurysms in digital red-free photographs: a diabetic retinopathy screening tool. Diabet Med. 2000;17(8):588–94.

    Article  CAS  Google Scholar 

  10. Hansen AB, Hartvig NV, Jensen MS, Borch-Johnsen K, Lund-Andersen H, Larsen M. Diabetic retinopathy screening using digital non-mydriatic fundus photography and automated image analysis. Acta Ophthalmol Scand. 2004;82(6):666–72.

    Article  Google Scholar 

  11. Larsen M, Godt J, Larsen N, Lund-Andersen H, Sjølie AK, Agardh E, et al. Automated detection of fundus photographic red lesions in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2003;44(2):761–6.

    Article  Google Scholar 

  12. Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci. 2016;57(13):5200–6.

    Article  Google Scholar 

  13. Xie Y, Gunasekeran DV, Balaskas K, Keane PA, Sim DA, Bachmann LM, et al. Health economic and safety considerations for artificial intelligence applications in diabetic retinopathy screening. Transl Vis Sci Technol. 2020;9(2):22.

    Article  Google Scholar 

  14. Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med. 2018;1(1):1–8.

    Article  Google Scholar 

  15. Van Der Heijden AA, Abramoff MD, Verbraak F, van Hecke MV, Liem A, Nijpels G. Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System. Acta Ophthalmol (Copenh). 2018;96(1):63–8.

    Article  Google Scholar 

  16. Haritoglou C, Kernt M, Neubauer A, Gerss J, Oliveira CM, Kampik A, et al. Microaneurysm formation rate as a predictive marker for progression to clinically significant macular edema in nonproliferative diabetic retinopathy. Retina. 2014;34(1):157–64.

    Article  CAS  Google Scholar 

  17. Nunes S, Pires I, Rosa A, Duarte L, Bernardes R, Cunha-Vaz J. Microaneurysm turnover is a biomarker for diabetic retinopathy progression to clinically significant macular edema: findings for type 2 diabetics with nonproliferative retinopathy. Ophthalmologica. 2009;223(5):292–7.

    Article  Google Scholar 

  18. Pappuru RK, Ribeiro L, Lobo C, Alves D, Cunha-Vaz J. Microaneurysm turnover is a predictor of diabetic retinopathy progression. Br J Ophthalmol. 2019;103(2):222–6.

    Article  Google Scholar 

  19. Tufail A, Kapetanakis VV, Salas-Vega S, Egan C, Rudisill C, Owen CG, et al. An observational study to assess if automated diabetic retinopathy image assessment software can replace one or more steps of manual imaging grading and to determine their cost-effectiveness. Health Technol Assess. 2016;20(92):1–72.

    Article  Google Scholar 

  20. Bhaskaranand M, Ramachandra C, Bhat S, Cuadros J, Nittala MG, Sadda SR, et al. The value of automated diabetic retinopathy screening with the EyeArt system: a study of more than 100,000 consecutive encounters from people with diabetes. Diabetes Technol Ther. 2019;21(11):635–43.

    Article  Google Scholar 

  21. Solanki K, Bhaskaranand M, Bhat S, Ramachandra C, Cuadros J, Nittala MG, et al. Automated diabetic retinopathy screening: large-scale study on consecutive patient visits in a primary care setting. In: Diabetologia. Springer 233 SPRING ST, New York; 2016. p. S64.

    Google Scholar 

  22. Ipp E, Shah VN, Bode BW, Sadda SR. 599-P: diabetic retinopathy (DR) screening performance of general ophthalmologists, retina specialists, and artificial intelligence (AI): analysis from a pivotal multicenter prospective clinical trial. Diabetes [Internet]. 2019 [cited 2020 Feb 26];68(Supplement 1). Available from: https://diabetes.diabetesjournals.org/content/68/Supplement_1/599-P

  23. Heydon P, Egan C, Bolter L, Chambers R, Anderson J, Aldington S, et al. Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients. Br J Ophthalmol. 2020;bjophthalmol-2020-316594.

    Google Scholar 

  24. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–10.

    Article  Google Scholar 

  25. Krause J, Gulshan V, Rahimy E, Karth P, Widner K, Corrado GS, et al. Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology. 2018;125(8):1264–72.

    Article  Google Scholar 

  26. Gulshan V, Rajan RP, Widner K, Wu D, Wubbels P, Rhodes T, et al. Performance of a deep-learning algorithm vs manual grading for detecting diabetic retinopathy in India. JAMA Ophthalmol. 2019;137(9):987–93.

    Article  Google Scholar 

  27. Hsieh Y-T, Chuang L-M, Jiang Y-D, Chang T-J, Yang C-M, Yang C-H, et al. Application of deep learning image assessment software VeriSeeTM for diabetic retinopathy screening. J Formos Med Assoc. 2021;120(1, Part 1):165–71.

    Article  Google Scholar 

  28. González-Gonzalo C, Sánchez-Gutiérrez V, Hernández-Martínez P, Contreras I, Lechanteur YT, Domanian A, et al. Evaluation of a deep learning system for the joint automated detection of diabetic retinopathy and age-related macular degeneration. Acta Ophthalmol (Copenh). 2020;98(4):368–77.

    Article  Google Scholar 

  29. DSW T, Cheung CY-L, Lim G, GSW T, Quang ND, Gan A, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22):2211–23.

    Article  Google Scholar 

  30. Quellec G, et al. Instant automatic diagnosis of diabetic retinopathy. arXiv e-prints: arXiv-1906. 2019. https://arxiv.org/abs/1906.11875.

  31. Quellec G, et al. Automatic detection of rare pathologies in fundus photographs using few-shot learning. Med Image Anal. 2020;61:101660. https://doi.org/10.1016/j.media.2020.101660. https://arxiv.org/abs/1907.09449.

  32. Rajalakshmi R, Subashini R, Anjana RM, Mohan V. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. Eye. 2018;32(6):1138–44.

    Article  Google Scholar 

  33. Natarajan S, Jain A, Krishnan R, Rogye A, Sivaprasad S. Diagnostic accuracy of community-based diabetic retinopathy screening with an offline artificial intelligence system on a smartphone. JAMA Ophthalmol. 2019;137(10):1182–8.

    Article  Google Scholar 

  34. Sosale B, Sosale AR, Murthy H, Sengupta S, Naveenam M. Medios–An offline, smartphone-based artificial intelligence algorithm for the diagnosis of diabetic retinopathy. Indian J Ophthalmol. 2020;68(2):391–5.

    Article  Google Scholar 

  35. Sosale B, Aravind SR, Murthy H, Narayana S, Sharma U, SGV G, et al. Simple, mobile-based artificial intelligence algorithm in the detection of diabetic retinopathy (SMART) study. BMJ Open Diabetes Res Amp Care. 2020;8(1):e000892.

    Article  Google Scholar 

  36. MWM W, Mishra DK, Hartmann L, Shah P, Konana VK, Sagar P, et al. Diabetic retinopathy screening using smartphone-based fundus imaging in India. Ophthalmology. 2020;127(11):1529–38.

    Article  Google Scholar 

  37. Bawankar P, Shanbhag N, SS K, Dhawan B, Palsule A, Kumar D, et al. Sensitivity and specificity of automated analysis of single-field non-mydriatic fundus photographs by Bosch DR Algorithm—comparison with mydriatic fundus photography (ETDRS) for screening in undiagnosed diabetic retinopathy. PLoS One. 2017;12(12):e0189854.

    Article  Google Scholar 

  38. Rogers TW, Gonzalez-Bueno J, Franco RG, Star EL, Marín DM, Vassallo J, et al. Evaluation of an AI system for the detection of diabetic retinopathy from images captured with a handheld portable fundus camera: the MAILOR AI study. Eye. 2020:1–7.

    Google Scholar 

  39. Sandhu HS, Eladawi N, Elmogy M, Keynton R, Helmy O, Schaal S, et al. Automated diabetic retinopathy detection using optical coherence tomography angiography: a pilot study. Br J Ophthalmol. 2018;102(11):1564–9.

    Article  Google Scholar 

  40. Heisler M, Karst S, Lo J, Mammo Z, Yu T, Warner S, et al. Ensemble deep learning for diabetic retinopathy detection using optical coherence tomography angiography. Transl Vis Sci Technol. 2020;9(2):20.

    Article  Google Scholar 

  41. Piyasena MMPN, Yip JL, MacLeod D, Kim M, Gudlavalleti VSM. Diagnostic test accuracy of diabetic retinopathy screening by physician graders using a hand-held non-mydriatic retinal camera at a tertiary level medical clinic. BMC Ophthalmol. 2019;19(1):89.

    Article  Google Scholar 

  42. Estil S, Steinarsson ÆÞ, Einarsson S, Aspelund T, Stefánsson E. Diabetic eye screening with variable screening intervals based on individual risk factors is safe and effective in ophthalmic practice. Acta Ophthalmol (Copenh). 2020;98(4):343–6.

    Article  Google Scholar 

  43. Lee, A. Y., Yanagihara, R. T., Lee, C. S., Blazes, M., Jung, H. C., Chee, Y. E., ... & Boyko, E. J. (2021). Multicenter, head-to-head, real-world validation study of seven automated artificial intelligence diabetic retinopathy screening systems. Diabetes care. 2021;44(5), 1168–1175.

    Google Scholar 

  44. Grzybowski, A., & Brona, P. (2021). Analysis and Comparison of Two Artificial Intelligence Diabetic Retinopathy Screening Algorithms in a Pilot Study: IDx-DR and Retinalyze. J Clin Med. 2021;10(11), 2352.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grzybowski, A., Brona, P. (2021). Artificial Intelligence in Diabetic Retinopathy. In: Grzybowski, A. (eds) Artificial Intelligence in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-78601-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78601-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78600-7

  • Online ISBN: 978-3-030-78601-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics