Skip to main content

The Frequency of Rare Cyclones in the Eastern Mediterranean and Northeastern Africa as a Sign of Climate Change Using Satellite Imagery, Climate Data Models and GIS-Based Analysis

  • 409 Accesses

Part of the Climate Change Management book series (CCM)

Abstract

Eastern Mediterranean and Northeastern Africa (EMNEA) are exposed to atmospheric depressions that affecting their climatic conditions during the period between October and May of each year “wet season”, and the passage of cyclones is a rare event. In the wet season 2019/2020, Egypt which located in the EMNEA region, exposed to two cyclones that passed from the south to the north in a rare event as well, the first was in October 2019 and called “Medicane” and the second was in March 2020 and called “Dragon”. The study deals with the frequency of the rare cyclones in Egypt during the wet season 2019/2020 as a sign of climate change in the EMNEA region using MODIS/AQUA satellite imagery, climate satellite imagery by the PERSIANN project and CHIRPS model, outputs of the ECMWF climate model as well as outputs of the Global Climate Forecast System (GFS). The study concluded that these cyclones were a rare weather condition represented in a heavy rain volume was about 543 million m3 and gusty winds 65 km/h for the “Medicane” cyclone and about 950 million m3 and a cyclonic wind speed of 120 km/h for the “Dragon” cyclone. In addition, these cyclones were associated with a set of factors that coincided in a rare manner and contributed to the engender and development Which can be considered as a Sing of climate change. These factors were represented in the northern oscillation movement of the Sudan depression and the Red Sea Trough (RST) accompanied by a deepening of a cold depression in the upper atmosphere of 500 hpa, and a simultaneous rise in the Sea Surface Temperature (SST) of the eastern Mediterranean region in the Medicane cyclone, and the convergence of the polar and tropical jet stream in the upper atmosphere above the EMNEA region. In addition to the correlation of these factors with the major pressure oscillations in the world and the occurrence of the El-Nino.

Keywords

  • Climate change
  • Eastern mediterranean
  • Medicane
  • Dragon
  • Cyclones

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-78566-6_3
  • Chapter length: 39 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-78566-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 1

Source MODIS/AQUA imagery

Fig. 2
Fig. 3

Source Tous and Romero (2012)

Fig. 4

Source GFS & ECMWF models data obtained from (https://www.ventusky.com/, https://www.windy.com/)

Fig. 5

Source GFS & ECMWF models data obtained from (https://www.ventusky.com/, https://www.windy.com/)

Fig. 6

Source MODIS/AQUA images

Fig. 7

Source CHIRPS images obtained from (https://data.chc.ucsb.edu/products/CHIRPS-2.0/)

Fig. 8

Source GFS & ECMWF models data obtained from (https://www.ventusky.com/, https://www.windy.com/)

Fig. 9

Source GFS & ECMWF models data obtained from (https://www.ventusky.com/, https://www.windy.com/)

Fig. 10

Source CHIRPS images obtained from (https://data.chc.ucsb.edu/products/CHIRPS-2.0/)

Fig. 11
Fig. 12

Source CHIRPS images obtained from (https://data.chc.ucsb.edu/products/CHIRPS-2.0/)

Fig. 13

Source ECMWF & GFS images obtained from (https://www.ventusky.com/, https://www.windy.com/) and (Sutton. L. J., Curry. P. A., 1931)

Fig. 14

Source ECMWF & GFS images obtained from (https://www.ventusky.com/, https://www.windy.com/)

Fig. 15

Source (NCEI, 2020) National Centers for Environmental Information (https://www.ncei.noaa.gov/)

Fig. 16

Source Rain data obtained from (NASA 2020 https://power.larc.nasa.gov/data-access-viewer/) and El-Nino Index data obtained from ((NOAA 2020a, b https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php)

Fig. 17

Source ECMWF & GFS images obtained from (https://www.ventusky.com/, https://www.windy.com/)

Fig. 18

Source ECMWF & GFS images obtained from (https://www.ventusky.com/, https://www.windy.com/)

Fig. 19

Source ECMWF & GFS images obtained from (https://www.ventusky.com/ and https://www.windy.com/)

Notes

  1. 1.

    The wet season is the period extended from October to May which characterized by atmospheric depression activity and is associated with many climatic conditions including rains (Xoplaki et al. 2004).

  2. 2.

    Medicane consists of two parts (Mediterranean - Hurricane) and it is a cyclone in the first category according to NASA classification and Greek meteorological authority, and it is one of the rare weather phenomena that occur in the Mediterranean Sea, and it is often referred to as the Mediterranean tropical cyclone or the Mediterranean hurricane.

References

  • Abdel-kader AA (1987) On the genesis and structure of winter deprssions. Bull Fac Arts Cairo Univ xxxxiv and xxxxv 1:111–132

    Google Scholar 

  • Ahrens CD (2008) Essentials for meteorology an invitation to the atmosphere, 5th edn. Thomson Learning Academic Resource Center, USA, p 198

    Google Scholar 

  • Al-Fiqi AA (1999) The wind in Egypt, study in climatic geography. Master Thesis. Faculty of Arts. Ain Shams University

    Google Scholar 

  • Alpert P, Baldi M, Ilani R, Krichak SO, Price C, Rodo X, Saaroni H, ZivB Kishcha P, Barkan J, Mariotti A, Xoplaki E (2006) Relations between climate variability in the Mediterranean region and the tropics: ENSO, South Asian and African monsoons, hurricanes and Saharan dust. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability, vol 4. Elsevier, Amsterdam, pp 149–177

    Google Scholar 

  • Alpert P, Ziv B (1989) The Shara cyclone, observations and some Theoretical considerations. J Geophys Res 94:18495–18514

    Google Scholar 

  • Alpert P, Osetinsky I, Ziv B, Shafir H (2004a) Semi-objective classification for daily synoptic systems: application to the EM climate change. Int J Climatol 24:1001–1011

    Google Scholar 

  • Alpert P, Osetinsky I, Ziv B, Shafir H (2004b) A new seasons definition based on the classified daily synoptic systems: an example for the EM. Int J Climatol 24:1013–1021

    Google Scholar 

  • Ambaum MHP, Hoskins BJ, Stephenson DB (2001) Arctic oscillation or north Atlantic oscillation? Am Meteorol Soc J Climate 14:3495–3507. https://doi.org/10.1175/1520-0442(2001)014%3c3495:AOONAO%3e2.0.CO;2

    ADS  CrossRef  Google Scholar 

  • Andronova NG, Schlesinger ME (2000) Causes of global temperature changes during the 19th and 20th centuries. Geophys Res Lett 27:2137–2140

    ADS  Google Scholar 

  • Anna W (2015) Medicanes—the hurricane of the mediterranean?”, DWD, wetterdienst.de, 1 September 2015, Accessed 15 December 2019, available at: https://www.wetterdienst.de/Deutschlandwetter/Thema_des_Tages/1880/medicanes-die-hurrikane-desmittelmeeres

  • Arpe K, Bengtsson L, Golitsyn GS, Mokhov II, Semenov VA, Sporyshev PV (2000) Connection between Caspian Sea level variability and ENSO. Geophys Res Lett 27:2693–2696

    ADS  Google Scholar 

  • Artale V, Calmanti S, Malanotte-Rizzoli P, Pisacane G, Rupolo V, Tsimplis M (2006) Chapter 5 The Atlantic and mediterranean sea as connected systems. Dev Earth Environ Sci 283–323. https://doi.org/10.1016/s1571-9197(06)80008-x

  • Attaher SM, Medany MA, El-Gindy A (2010) Feasibility of some adaptation measures of on-farm irrigation in Egypt under water scarcity conditions. Options Mediterraneennes 2010(95):307–312

    Google Scholar 

  • Badawy MM, Abdel Aziz AO, Mamtimin B (2016) Flash floods in the Sahara: a case study for the 22 January 2013 flood in Qena. Egypt Geomatics, Natural Hazards and Risk 7–1:215–236

    Google Scholar 

  • Baldwin MP, Dunkerton TJ (1999) Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J Geophys Res 104(30):937–30 946, doi:https://doi.org/10.1029/1999JD900445

  • Ag Barnston, Re Livezey (1987) Classification, Seasonality and Persistence of Low Frequency Atmospheric Circulation Patterns. Mon Weather Rev 115:1083–1126

    ADS  Google Scholar 

  • Bengtsson L, Arpe K, Roeckner E, Schulzweida U (1996) Climate predictability experiments with a general circulation model. Clim Dyn 12:261–278

    Google Scholar 

  • Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to anomalies of ocean temperature. Tellus 18:820–829

    ADS  Google Scholar 

  • Boscolo R (eds) Mediterranean climate variability. Elsevier

    Google Scholar 

  • Bro¨nnimann S (2007) Impact of El Nin˜ O–Southern Oscillation on European Climate, Reviews of Geophysics, 45, RG3003/ 2007, the American Geophysical Union

    Google Scholar 

  • Bronnimann S, Xoplaki E, Casty C, Pauling A, Luterbacher J (2007) ENSO influence on Europe during the last centuries. Clim Dyn 28:181–197

    Google Scholar 

  • Butler AH, Polvani LM (2011) El Niño, La Niña, and stratospheric sudden warmings: A reevaluation in light of the observational record: El Niño, La Niña, and SSWS. Geophys Res Lett 38:L13807. https://doi.org/10.1029/2011GL048084

    ADS  CrossRef  Google Scholar 

  • Butler AH, Polvani LM, Deser C (2014) Separating the stratospheric and tropospheric pathways of El Niño-Southern Oscillation teleconnections. Environ. Res. Lett. 9: https://doi.org/10.1088/1748-9326/9/2/024014

    ADS  CrossRef  Google Scholar 

  • Cavicchia and von Storch. (2011). “The Simulation of Medicanes in A High-Resolution Regional Climate Model”, Springer-Verlag, vol. 39, November 2011, Climate Dynamic, https://doi.org/10.1007/s00382-011-1220-0

  • Cavicchia L, von Storch H, Gualdi S (2014) A Long-Term Climatology of Medicanes. Climate Dyn 43:1183–1195. https://doi.org/10.1007/s00382-013-1893-7

  • Christiansen B (2001) Downward propagation of zonal mean zonal wind anomalies from the stratosphere to the troposphere: Model and reanalysis. J Geophys Res 106, 27 307–27 322. https://doi.org/10.1029/2000JD000214

  • Cohen J, Barlow M (2005) The NAO, the AO, and global warming: how closely related? J Clim 18:4498–4513

    ADS  Google Scholar 

  • Cohen J, Frei A, Rosen RD (2005) The role of boundary conditions in AMIP-2 simulations of the NAO.J. Climate 18:973–981

    ADS  Google Scholar 

  • Colin P, Stone L, Huppert A, Rajagopalan B, Alpert P (1998) A possible Link Between El Nino and Precipitation in Israel, Geophysical ResearchLetters,Vol.25, No.21

    Google Scholar 

  • Cook BI Anchukaitis KJ, Touchan R, Meko DM, Cook ER (2016) Spatio-temporal drought variability in the Mediterranean over the last 900 years, Journal of Geophysical Research: Atmospheres https://doi.org/10.1002/2015jd023929

  • Copernicus. (2020). Near surface meteorological variables from 1979 to 2018 derived from bias-corrected reanalysis, European Union, available at: https://cds.climate.copernicus.eu/cdsapp#!/dataset/derived-near-surface-meteorological-variables?tab=form

  • Cramer W, Guiot J, Fader M, Garrabou J, Gattuso J-P, Iglesias A, Lange MA, Lionello P, Lla-sat MC, Paz S, Peñuelas J, Snoussi M, Toreti A, Tsimplis MN, Xoplaki E. (2018). Climate change and interconnected risks to sustainable development in the Mediterranean. Nature Climate Change 8, 972-980, https://doi.org/10.1038/s41558-018-0299-2. Available at: https://ufmsecretariat.org/wp-content/uploads/2019/10/MedECC-Booklet_EN_WEB.pdf

  • Dai. P., Benkui. T. (2017). The Nature of the Arctic Oscillation and Diversity of the Extreme Surface Weather Anomalies It Generates. American Meteorological Socity. J. Climate (2017) 30 (14): 5563–5584. https://doi.org/10.1175/JCLI-D-16-0467.1

  • David W.j. Thomson, John M. Wallace. (1998) The Arctic Oscillation Signature in The Wintertime Geopotential Height and Temperature Fields, Geophysical Research Letters, Vol.25, N.9

    Google Scholar 

  • Dayan U, Abramski R (1983) Heavy rain in the Middle East related to unusual Jet Stream properties. Bull Am Meteor Soc 64:1138–1140

    ADS  Google Scholar 

  • Dayan U, Ziv B, Margalit A, Morin E, Sharon D (2001) A severe autumn storm over the Middle East: synoptic and mesoscale convection analysis. Theor. Appl. Clim. 69:103–122

    ADS  Google Scholar 

  • Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn. 16:661–676

    ADS  Google Scholar 

  • Deser C (2000) On the teleconnectivity of the “Arctic Oscillation”. Geo phys. Res. Lett. 27:779–782. https://doi.org/10.1029/1999GL010945

    ADS  CrossRef  Google Scholar 

  • Donald Ahrens C (2008) Essentials for Meteorology an Invitation to The Atmosphere, 5th edn. Thomson learning Academic Resource Center, USA

    Google Scholar 

  • El Dessouky TM (1980) Forecasting Winter rainfall over Egypt using the (1000–500 mb) thickness and the 500 mb anamolies in Autumn and Summer. Meteorological Department, Cairo

    Google Scholar 

  • El Guindy MF (1971) Dynamical Interaction between Troposphere and Lower Stratosphere in Spring 1967. Meteorological Department, Cairo

    Google Scholar 

  • El-Asrag, A. M. (1999). Climate Change over Egypt and Its Relevance to Global Change, The fourth conference meteorology and sustainable development to 21 st century 7-9 march, the Egyptian Meteorology Authority, pp. 85-114

    Google Scholar 

  • El-Asrag, A. M. and Hassan, A. S. (1997). Climatological Study of Spring Depressions Over North Africa In Last Five Foregoing Decades., Conference of Meteorology and Environmental Cases; March 2–6, Egyptian Meteorological Authority, pp. 113-126

    Google Scholar 

  • El-Fandy MG (1948) the effect of the Sudan monsoon low on the development of thundery condition in Egypt. J., R. Met. Soc, Vol, Palestine and Syria, Quart, p 74

    Google Scholar 

  • El-Fandy MG (1949) Oscillation of the Sudan monsoon low. J., R. Met. Soc., Vol, Quart, p 94

    Google Scholar 

  • Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys Res Lett 28:2077–2080

    ADS  Google Scholar 

  • European Centre for Medium-Range Weather Forecasts ECMWF. (2020). Available at: https://www.ecmwf.int/

  • FAO. (2016). Egypt, Geography, Climate and Population. Food and Agriculture Organization. Available at: http://www.fao.org/nr/water/aquastat/countries_regions/egy/print1.stm

  • Feidas H, Noulopoulou Ch, Makrogiannis T, Bora-Senta E (2007) Trend Analysis of Precipitation Time Series in Greece and Their Relationship with Circulation Using Surface and Satellite Data : 1955–2001. Theor. Appl. Climatol. 87:155–177

    ADS  Google Scholar 

  • Feldstein SB, Dayan U (2008) Circum global teleconnections and wave packets associated with Israeli winter precipitation. Q J R MeteorolSoc 134:455–467

    ADS  Google Scholar 

  • Felis, T., J. Pa¨tzold, Y. Loya, M. Fine, A. H. Nawar, and G. Wefer. (2000). A coral oxygen isotope record from the northern Red Sea documenting NAO, ENSO, and North Pacific teleconnections on Middle East climate variability since the year 1750, Paleoceanography, 15, 679–694

    Google Scholar 

  • Flocas, H.A., J. Kouroutzoglou, K. Keay and M. Hatzaki1. (2009). Cyclonic Tracks Over the Eastern Mediterranean In the Present Climate, 312–319

    Google Scholar 

  • Flocas, H. A., Simmonds, I., Kouroutzoglou, J., Keay, K., Hatzaki, M., Bricolas, V., & Asimakopoulos, D. (2010). On Cyclonic Tracks over the Eastern Mediterranean, Journal of Climate, 23(19), 5243–5257. Available at: https://journals.ametsoc.org/view/journals/clim/23/19/2010jcli3426.1.xml

  • Flood Control Center (2003) San Diego County Hydrology Manual, 322 p. San Diego County Flood Control Advisory Commission, San Diego

    Google Scholar 

  • Fraedrich K, Muller K (1992) Climate anomalies in Europe associated with ENSO extremes. Int J Climatol 12:25–31

    Google Scholar 

  • Funk Chris, Peterson Pete, Landsfeld Martin, Pedreros Diego, Verdin James, Shukla Shraddhanand, Husak Gregory, Rowland James, Harrison Laura, Hoell Andrew, Michaelsen Joel (2015) The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data 2(150066):2015. https://doi.org/10.1038/sdata.2015.66

    CrossRef  Google Scholar 

  • Giorgi F. (2006). Climate change hot spots. Geophys Res Lett

    Google Scholar 

  • Givati A, Rosenfeld D (2013) The Arctic Oscillation, climate change and the effects on precipitation in Israel. Atmos Res 132–133:114–124

    Google Scholar 

  • Gordana Jovanovic. (2008). The influence of Arctic and North Atlantic Oscillation on Precipitation Regime in Serbia, IOP Conf. Series,Earth and Environmental Science, 4, P.3.(3)

    Google Scholar 

  • Gouirand I, Moron V (2003) Variability of the impact of El Nin˜o–Southern Oscillation on sea-level pressure anomalies over the North Atlantic in January to March (1874–1996). Int J Climatol 23:1549–1566

    Google Scholar 

  • Greatbatch Richard J (2000) The North Atlantic Oscillation, Stochastic Environmental Research and Risk Assessment, Montreal, Version as of May 4. Entretiens Jacques-Cartier, Montreal

    Google Scholar 

  • H. M. S. O. (1962). Weather in the Mediterranean I: general meteorology. 2nd ed. London, 362 p

    Google Scholar 

  • Hafez YY, Hasanean HM (2000) The Variability of Wintertime Precipitation in The Northern Coast of Egypt and its Relationship with The North Atlantic Oscillation. Cairo University, Egypt, September, ICEHM

    Google Scholar 

  • Hasanean H.M. (2004). Precipitation Variability Over the Mediterranean and Its Linkage With El Niño Southern Oscillation (ENSO), Journal of Meteorology,Vol.29,No.289, May/ June

    Google Scholar 

  • Hassan, W. Abbas. (2009). “Change in some elements of climate in the Nile Delta during the twentieth century, a study using geographic information systems”. a master’s thesis. Faculty of Arts. Ain Shams University

    Google Scholar 

  • Hatsushika H, Yamazaki K (2001) Interannual variations of temperature and vertical motion at the tropical tropopause associated with ENSO. Geophys Res Lett 28:2891–2894

    ADS  Google Scholar 

  • Hatzianastassiou N, Gkikas A, Mihalopoulos N, Torres O, Katsoulis BD (2009) Natural versus anthropogenic aerosols in the eastern Mediterranean basin derived from multiyear TOMS and MODIS satellite data. J Geophys Res 114:D24202. https://doi.org/10.1029/2009JD011982

    ADS  CrossRef  Google Scholar 

  • Hellenic National Meteorological Service. (2017). “Significant Weather and Climatic Events in Greece during 2017”, HNMS Report, 2017

    Google Scholar 

  • Hess, P., and H. Brezowsky. (1969). Katalog der Grosswetterlagen Europas. 2. Neu bearbeitete und erga¨nzte Auflage, Ber. Dtsch. Wetterdienstes, 15(113), 56 pp

    Google Scholar 

  • Houghton JT (1991) (1993). Scientific Assessment of Climate Change: Summary of the IPCC Working Group I Report, Paper. In: Jager J, Ferguson HL (eds) Climate Change: Science. Cambridge University Press, Cambridge, First Published, Impacts and Policy, pp 23–44

    Google Scholar 

  • Hurrell J (1996) Influence of variations in extratropical wintertime teleconnections on Norhtern Hemisphere temperature. Geo Res Lett 23(6):665–668

    ADS  Google Scholar 

  • Ignatius G. Rigor, John M. Wallace. (2004). Variations in The Age of Arctic Sea-ice and Summer Sea-ice Extent, Geophysical Research Letters, Vol. 31,P.1.(4)

    Google Scholar 

  • Ineson S, Scaife AA (2009) The role of the stratosphere in the European climate response to El Niño. Nat Geosci 2:32–36. https://doi.org/10.1038/ngeo381

    ADS  CAS  CrossRef  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). (2007). Climate Change: The Physical Science Basis, eds. S

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). (2013). Annex I: Atlas of Global and Regional Climate Projections [van Oldenborgh GJ et al. (eds.)]. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Ionita M., Boroneanṭ C., Chelcea S. (2015). Seasonal modes of dryness and wetness variability over Europe and their connections with large scale atmospheric circulation and global sea surface temperature, Clim. Dyn., DOI 10.1007/s00382-015-2508-2

    Google Scholar 

  • Jacob D (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14(2):563–578

    Google Scholar 

  • Gordana Jovanovic, Reljin I, Reljin B (2008) The Influence of Arctic and North Atlantic Oscillation on Precipitation Regime in Serbia, IOP Conf. Earth and Environmental Science, Series, p 4

    Google Scholar 

  • Kahana R, Ziv B, Enzel Y, Dayan U (2002) Synoptic climatology of major floods in the Negev Desert. Israel. Int. J. Clim. 22:822–867

    Google Scholar 

  • Kodera K, Kuroda Y (2004) Two teleconnection patterns involved in the North Atlantic/Arctic Oscillation. Geophys Res Lett 31:L20201. https://doi.org/10.1029/2004GL020933

    ADS  CrossRef  Google Scholar 

  • Korosec. M. (2019). Rising potential for shallow warm core development in the far eastern Mediterranean, Oct 24-25th, Server Weather Europe, available at: https://www.severe-weather.eu/mcd/very-warm-eastern-mediterranean-sea/

  • Krichak SO, Alpert P (2005a) Decadal trends in the East Atlantic/WestRussia pattern and the Mediterranean precipitation. Int J Climatol 25:183–192

    Google Scholar 

  • Krichak SO, Alpert P (2005b) Signatures of the NAO in the atmospheric circulation during wet winter months over the Mediterranean region. Theor Appl Climatol 82(1–2):27–39

    ADS  Google Scholar 

  • Krichak SO, Kishcha P, Alpert P (2002) Decadal trends of main Eurasian oscillations and the Mediterranean precipitation. Theor Appl Climatol 72:29–220

    Google Scholar 

  • Krichak, S. O., & Alpert, P. (1998). Role of large-scale moist dynamics in November 1-5, 1994 hazardous Mediterranean Weather, 103(D16), 19453-19468

    Google Scholar 

  • Krichak SO, Alpert P, Krishnamurti TN (1997a) Interaction of topography and tropospheric flow - a possible generator for the Red Sea trough? Meteorol. Atmosph. Phys. 63(3–4):149–158

    ADS  Google Scholar 

  • Krichak SO, Alpert P, Krishnamurti TN (1997b) Red Sea trough/cyclone development - numerical investigation. Meteorol. Atmosph. Phys. 63(3–4):159–170

    ADS  Google Scholar 

  • Krichak SO, Breitgand JS, Gualdi S, Feldstein SB (2013) Teleconnection–extreme precipitation relationships over the Mediterranean region. Theoretical and applied climatology, Springer, https://doi.org/10.1007/s00704-013-1036-4

    CrossRef  Google Scholar 

  • Kuglitsch FG (2010) Heat wave changes in the eastern Mediterranean since 1960. Geophys Res Lett 37(4):L04802

    ADS  Google Scholar 

  • Kutiel H, Maheras P, Guika S (1996) Circulation Indices Over the Mediterranean and Europe and Their Relationship with Rainfall Conditions Across the Mediterranean. Theor. Appl. Climatol. 54:125–138

    ADS  Google Scholar 

  • Kutiel H, Maheras P, Turkes M, Paz S (2002) North Sea – Caspian Pattern (NCP) – An upper Level Atmospheric Teleconnection Affecting the Eastern Mediterranean – Implications on The Regional Climate. Theor. Appl. Climatol. 72:173–192

    ADS  Google Scholar 

  • Kutiel H, Paz S (1998) Sea Level Pressure Departures in the Mediterranean and their Relationship with Monthly Rainfall Conditions in Israel. Theor. Appl. Climatol. 60:93–109

    ADS  Google Scholar 

  • Lamb Peter J., Peppler Randy A. (1987). North Atlantic Oscillation:Concept and Application, Bulletin of The American Meteorological Society, Vol. 68, No. 10

    Google Scholar 

  • Lasheen AM (1971) On the significance of the Humidity field in the northern Africa and in adjacent areas. Meteorological Department, Cairo

    Google Scholar 

  • Levi M (1970) the Synoptics of Hail in Israel. Israel J Earth Sci 19:77–83

    Google Scholar 

  • Li, L., Bozec, A., Somot, S., Béranger, K., Bouruet-Aubertot, P., Sevault, F., & Crépon, M. (2006). Chapter 7 Regional atmospheric, marine processes and climate modelling. Developments in Earth and Environmental Sciences, 373–397. https://doi.org/10.1016/s1571-9197(06)80010-8

  • Lionello, P., Bhend, J., Buzzi, A., Della-Marta, P. M., Krichak, S. O., Jansà, A., Trigo, R. (2006). Chapter 6 Cyclones in the Mediterranean region: Climatology and effects on the environment. Developments in Earth and Environmental Sciences, 325–372. https://doi.org/10.1016/s1571-9197(06)80009-1

  • Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V., Li, L., Xoplaki, E. (2006). The Mediterranean climate: An overview of the main characteristics and issues. Developments in Earth and Environmental Sciences, 1–26. doi:10.1016/s1571-9197(06)80003-0

    Google Scholar 

  • López-Moreno J., Vicente-Serrano S.M., Morán-Tejeda E., Lorenzo J., El-Kenawy A., Zabalza, J., Beniston M. (2010). Impact of NAO on Winter Temperature and Precipitation Modes in The Mediterranean Mountains: Implications for Snow Cover, ESF-Medclivar Workshop on “ Hydrological, Socioeconomic and Ecological Impacts of The North Atlantic Oscillation in The Mediterranean Region “ 24 - 27 May, Zaragoza, Spain

    Google Scholar 

  • Lopez-Moreno JI, Vicente-Serrano SM (2008) Extreme phases of the wintertime North Atlantic oscillation and drought occurrence over Europe: a multi-temporal-scale approach. J Clim 21:1220–1243

    ADS  Google Scholar 

  • Luterbacher, J., Xoplaki, E., Casty, C., Wanner, H., Pauling, A., Küttel, M., Ladurie, E. L. R. (2006). Chapter 1 Mediterranean climate variability over the last centuries: A review. Developments in Earth and Environmental Sciences, 27–148. https://doi.org/10.1016/s1571-9197(06)80004-2

  • Maheras P, Kutiel H (1999a) Spatial and temporal variations in the temperature regime in the mediterranean and their relationship with circulation during the Last Century. Int J Climatol 19:745–764

    Google Scholar 

  • Maheras P, Kutiel H (1999b) Spatial and temporal variations In the temperature regime In tthe mediterranean and their relationship with circulation during the last century. Int J Climatol 19(745–764):763

    Google Scholar 

  • Manzano A (2019) Analysis of the atmospheric circulation pattern effects over SPEI drought index in Spain, Atmosp Res 24 July, 104630

    Google Scholar 

  • Marcella Marc P, Eltahir Elfatih AB (2008) The Hydro climatology of Kuwait: explaining the variability of rainfall at seasonal and interannual time scales, J Hydrometeorol 9

    Google Scholar 

  • Mariotti A, Zeng N., Lau K.M. (2002). Euro-Mediterranean Rainfall and ENSO—a seasonally varying relationship. Geophys Res Lett 29:12. https://doi.org/10.1029/2001gl014248

  • Mariotti A, Ballabrera-Poy J, Zeng N (2005) Tropical influence on Euro-Asian autumn rainfall variability. Clim Dyn 24:511–521

    Google Scholar 

  • Martineu C, Caneill JY, Sadourny R (1999) Potential predictability of European winters from the analysis of seasonal simulations with an AGCM. J Clim 12:3033–3061

    ADS  Google Scholar 

  • MedECC (2019) Risks associated to climate and environmental changes in the Mediterranean region, a preliminary assessment by the MedECC Network Science-policy interface, Union of the Mediterranean

    Google Scholar 

  • Mestas-Nuñez AM, Enfield DB (1999) Rotated global modes of non-ENSO sea surface temperature variability.J. Climate 12:2734–2746

    ADS  Google Scholar 

  • Miksovsky J, Brazdil R, Trnka M, PiSoft P (2019) Long-term variability of drought indices in the Czech Lands and effects of external forcing and large-scale climate variability modes. Climate of the Past 15:827–847

    ADS  Google Scholar 

  • Moron M, Plaut G (2003) The impact of El Nin˜o Southern Oscillation upon weather regimes over Europe and the North Atlantic boreal winter. Int J Climatol 23:363–379

    Google Scholar 

  • NASA (2020) Power Data Access Viewer, Climate data for Egypt. Available at: https://power.larc.nasa.gov/data-access-viewer/

  • Nastos PT, Karavana-Papadimou and Matsangouras IT (2015) Tropical-Like Cyclones in the mediterranean: impacts and composite daily means and anomalies of synoptic conditions. In: 14th International conference on environmental science and technology, Rhodes, Greece, 3-5 Sept 2015, CEST2015_00407

    Google Scholar 

  • Nastos PT, Papadimou KK, Matsangouras IT (2017) Mediterranean tropical-like cyclones: impacts and composite daily mans anomalies of synoptic patterns. Atmos Res 208:156-166. https://doi.org/10.1016/j.atmosres.2017.10.023

  • Nazmi NM (2009) The flood disaster in Egypt, focusing on a study of one of the stricken villages, “Darnaka” village in Assiut Governorate”. J Eng Sect Al-Azhar Univ 4(12). Faculty of Engineering. Al-Azhar University. Cairo

    Google Scholar 

  • Nieto R, de la Torre L, NoguerolM., Añel JA, Gimeno L (2008) A climatology based on reanalysis of baroclinic developmental regions in the extratropical northern hemisphere. Annals of the New York Academy of Sciences, vol 1146, pp 235-255

    Google Scholar 

  • NOAA (2020a) ENSO: Recent Evolution, Current Status and Predictions, Climate Prediction Center/ NCEP. Available at: https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf

  • NOAA (2020b) Cold & Warm Episodes by Season, Historical El Nino/ La Nina episodes (1950-resent), available at: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php

  • North West Knowledge (2020) Climate Data Download, Egypt. Available at: https://climate.northwestknowledge.net/NWTOOLBOX/formattedDownloads.php?fbclid=IwAR2sLTy82aZRA_3iEHdd5N_r-bE1QJEiEKns3JsJ5Y0t1J19Qu1mOWC-egU

  • Nykjaer L (2009) Mediterranean Sea surface warming 1985-2006. Climate Res 39:11–17

    ADS  Google Scholar 

  • OMM-JCOMM-GMDSS/World Marine Weather Forecast (2017) Limit of Met areas—2017. WMO OMM, Accessed 15 December 2019. Available at: http://weather.gmdss.org/metareas.html

  • Osetinsky I, Alpert P (2006) Calendaricities and multimodality in the Eastern Mediterranean cyclonic activity, Nat Hazards Earth Syst Sci 6:587–596. Available at: www.nat-hazards-earth-syst-sci.net/6/587/2006/

  • Lamb Peter J, Peppler Randy A (1987) North Atlantic Oscillation: concept and application. Bull Am Meteorol Soc 68(10):1218

    ADS  Google Scholar 

  • Pozo-Va´zquez D, Esteban-Parra MJ, Rodrigo FS, CastroDiez Y (2001) The association between ENSO and winter atmospheric circulation and temperature in the North Atlantic region. J Clim 14:3408–3420

    Google Scholar 

  • Price C, Stone L, Huppert A, Rajagopalan B, Alpert P (1998) A possible link between El Nino and precipitation in Israel. Geophys Res Lett 25:3963–3966

    ADS  CAS  Google Scholar 

  • Quadrelli R, Pavan V, Molteni F (2001) Winter-time variability of Mediterranean precipitation and its links with large-scale circulation anomalies. Clim Dyn 17(5–6):457–466

    Google Scholar 

  • Radinovic D (1987) Mediterranean Cyclones and their influence on the weather and climate. WMO, PSMP, NO, p 24

    Google Scholar 

  • Reiter E (1963) Jet Stream Meteorology. Harvard Univ. Press, London

    Google Scholar 

  • Richard JG (2000) The North Atlantic oscillation, stochastic environmental research and risk assessment. Entretiens Jacques-Cartier, Montreal, p 2

    Google Scholar 

  • Rigor Ignatius G, Wallace John M (2004) Variations in the age of Arctic Sea-Ice and Summer Sea-ice Extent, Geophys Res Lett 31

    Google Scholar 

  • Rimbu N, Lohmann G, Felis T, Patzold J (2003) Shift in ENSO teleconnections recorded by a northern Red Sea coral. J Clim 16:1414–1422

    ADS  Google Scholar 

  • Rocha A (1999) Low-frequency variability of seasonal rainfall over theIberian peninsula and ENSO. Int J Climatol 19:889–901

    Google Scholar 

  • Roeckner E, Oberhuber JM, Bacher A, Christoph M, Kirchner I (1996) ENSO variability and atmospheric response in a global coupled atmosphere-ocean GCM. Clim Dyn 12:737–754

    Google Scholar 

  • Rogers JC, McHugh MJ (2002) On the separability of the North Atlantic oscillation and the Arctic oscillation. Climate Dyn. 19:599–608

    ADS  Google Scholar 

  • Jc Rogers (1990) Patterns of low frequency monthly sea level pressure variability (1899–1996) and associated wave cyclone frequencies. J Clim 3:1364

    Google Scholar 

  • Rojas M, Li L, Kanakidou M, Hatzianastassiou N, Seze G, Le Treut H (2013) Winter weather regimes over the Mediterranean region: their role for the regional climate and projected changes in the twenty-first century. Clim Dyn 2013(41):551–571. https://doi.org/10.1007/s00382-013-1823-8

    CrossRef  Google Scholar 

  • Romem M, Ziv B, Saaroni H (2007) Scenarios in the development of Mediterranean cyclones, Adv Geosci 12:59–65. Available at: www.adv-geosci.net/12/59/2007/

  • Romero R, Emanuel K (2017) Climate change and hurricane like extratropical cyclones: projections for North Atlantic Polar Lows and medicanes based on CMIP5 models. Am Meteorol Soc 30

    Google Scholar 

  • Salah H (2019) Mediterranean cyclones and offshore structures. Int Res J Eng Technol (IRJET) 06(12)

    Google Scholar 

  • Sarah F (2017) What we Know about Medicanes Hurricane-Like Storms in the Mediterranean. Phys.org, November 2017, Accessed 14 December 2019, available at: https://phys.org/news/2017-11-edicaneshurricane-like-storms-mediterranean.html

  • Sardeshmukh PD, Compo GP, Penland C (2000) Changes of probability associated with El Nin˜o. J Clim 13:4268–4286

    ADS  Google Scholar 

  • SCS (US SOIL CONSERVATION SERVICE). (1986). Urban Hydrology for Small Watersheds. Technical Report 55 (Springfield, VA: USDA). Available at: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb044171.pdf

  • Shaman J, Tzipperman E (2011) An Atmospheric teleconnection linking ENSO and Southwestern European precipitation. J Clim 24:124–139

    ADS  Google Scholar 

  • Shehadeh N (1986) The rainy season in the eastern basin of the mediterranean Sea and Arab Asi”. Bulletin of the geography department research bulletin. Fac Arts Kuwait Issue 89

    Google Scholar 

  • Shehaheh N (1973) The spatial Variation of Rainfall Spectra in Eastern the United States, Unpublished Ph.D. Thesis, Indiana University, Bloomington, U.S.A

    Google Scholar 

  • Stephenson DB, Pavan V, Collins M, Junge MM, Quadrelli R (2006) North Atlantic Oscillation response to transient greenhouse gas forcing and the impact on European winter climate: a CMIP2 multi-model assessment. Climate Dyn 27:401–420

    Google Scholar 

  • Stoner AK, Hayhoe K, Wuebbles DJ (2009) Assessing general circulation model simulations of atmospheric teleconnection patterns. J Climate 22(16): 4348–4372. https://doi.org/10.1175/2009JCLI2577.1

  • Sutton LJ, Curry PA (1931) Meteorological Atlas of Egypt. Egypt. Physical Department, Giza, Survey of Egypt

    Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: Month-to-month variability. Am Meteorol Soc J Climate 13:1000–1016. https://doi.org/10.1175/1520-0442(2000)013%3c1000:AMITEC%3e2.0.CO;2

    ADS  CrossRef  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300. https://doi.org/10.1029/98GL00950

    ADS  CrossRef  Google Scholar 

  • Toreti A, Naveau P (2015) On the evaluation of climate model simulated precipitation extremes. Environ Res Lett 10:

    ADS  Google Scholar 

  • Toreti A (2013) Projections of global changes in precipitation extremes from coupled model intercomparison project phase 5 models. Geophys Res Lett 40:4887–4892

    ADS  Google Scholar 

  • Tous, M. and Romero, R. (2012). Meteorological environments associated with medicane development. Int J Climatol 33:1–14. https://doi.org/10.1002/joc.3428

  • Trenberth KE (1990) Recent observed interdecadal climate changes in the Northern Hemisphere. Bull Amer Meteor Soc 71:988–993. https://doi.org/10.1175/1520-0477(1990)071%3c0988:ROICCI%3e2.0.CO;2

    ADS  CrossRef  Google Scholar 

  • Trenberth KE, Hoar TJ (1997) El Nino and climate chdi UgQ. Geo phys. Res Lett 24:3057–3060

    ADS  Google Scholar 

  • Trenberth KE, Hurrell JW (1994) Decadal atmosphere–ocean variations in the Pacific. Climate Dyn. 9:303–319. https://doi.org/10.1007/BF00204745

    ADS  CrossRef  Google Scholar 

  • Trigo R, Xoplaki E, Zorita E, Luterbacher J, Krichak SO, Alpert P, Jacobeit J, Saenz J, Fernandez J, Gonzalez-Rouco F, Garcia-Herrera R, Rodo X, Brunetti M, Nanni T, Maugeri M, Turkes M, Gimeno L, Ribera P, Brunet M, Trigo IF, Crepon M, Mariotti A (2006a) Relations between variability in the Mediterranean region and mid-latitude variability. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability, vol 4. Elsevier, Amsterdam, pp 179–226

    Google Scholar 

  • Trigo IF, Bigg GR, Davies TD (2002) A Climatology of cyclogenesis mechanisms in the Mediterranean. Mon Weather Rev 130:549–569

    ADS  Google Scholar 

  • Trigo R, Xoplaki E, Zorita E, Luterbacher J, Krichak SO, Alpert P, Mariotti A (2006) Chapter 3 Relations between variability in the Mediterranean region and mid-latitude variability. Dev Earth Environ Sci 179–226. https://doi.org/10.1016/s1571-9197(06)80006-6

  • Tsimplis MN, Zervakis V, Josey SA, Peneva EL, Struglia MV, Stanev EV, Theocharis A, Lionello P, Malanotte-Rizzoli P, Artale V, Oguz T (2006) Chapter 4 Changes in the oceanography of the Mediterranean Sea and their link to climate variability. Dev Earth Environ Sci 227–282. https://doi.org/10.1016/s1571-9197(06)80007-8

  • Ulbrich U, Christoph M (1999) A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Clim Dyn 15:551–559

    Google Scholar 

  • Ulbrich U, May W, Li L, Lionello P, Pinto JG, Somot S (2006) Chapter 8 The Mediterranean climate change under global warming. Dev Earth Environ Sci 399–415. https://doi.org/10.1016/s1571-9197(06)80011-x

  • UNEP (1992) Climate change fact sheet. Available at: www.unep.ch

  • van Loon H, Madden RA (1981) The Southern Oscillation. part I. Global associations with pressure and temperature in northern winter. Mon Weather Rev 109:1150–1162

    ADS  Google Scholar 

  • Vicente-Serrano SM (2016) The Westerly Index as complementary indicator of the North Atlantic oscillation in explaining drought variability across Europe. Clim Dyn 47:845–863. https://doi.org/10.1007/s00382-015-2875-8

    CrossRef  Google Scholar 

  • Walker GT (1923) Correlation in seasonal variations of weather. VIII. A preliminary study of world-weather. Mem. Indian Meteor Dep 24(Part 4):75–131

    Google Scholar 

  • Walker GT, Bliss EW (1932) World weather V Mem Roy Meteor Soc 4:53–84

    Google Scholar 

  • Wallace JM (2000) North Atlantic Oscillation/annular mode: two paradigms—one phenomenon. Q J R Meteorol Soc 126:791–805

    ADS  Google Scholar 

  • Wallace JM, Thompson DWJ (2002) The Pacific center of action of the Northern Hemisphere annular mode: Real or artifact? J. Climate 15:1987–1991. https://doi.org/10.1175/1520-0442(2002)015%3c1987:TPCOAO%3e2.0.CO;2

    ADS  CrossRef  Google Scholar 

  • Wang H, Chen Y, Pan Y, Li W (2015) Spatial and temporal variability of drought in the arid region of China and its relationships to teleconnection indices. J Hydrol 523:283–296

    Google Scholar 

  • Winstanley. D. (1970). The North African Flood Disaster, Sep. 1969, Royal meteorological society, 1st published Sep. 1970 https://doi.org/10.1002/j.1477-8696.1970.tb04128.x

  • World Bank. (2014). Turn Down the Heat: Confronting the New Climate Normal. Washington, DC: World Bank. Licence: CC BY-NC-ND 3.0IGO. Available at: http://documents.worldbank.org/curated/en/317301468242098870/Main-report

  • World Meteorological Organization. (1998). Guide to Wave Analysis and Forecasting. WMO no. 702, Geneva, Switzerland, 2nd Edition

    Google Scholar 

  • Wu A, Hsieh WW (2004) The nonlinear association between ENSO and the Euro-Atlantic winter sea level pressure. Clim Dyn 23:859–868

    Google Scholar 

  • Wuethrich, B. (1995). El Nino goes critical. New Scientist, 4, (Feb), 32-35

    Google Scholar 

  • Xoplaki E. (2002). Climate Variability over The Mediterranean, PhD,Geography Faculty of Science, the University of Bern, Switzerland

    Google Scholar 

  • Xoplaki E, Luterbacher J, Gonz ́alez-Rouco JF (2006) Mediterranean Summer Temperature and Winter Precipitation, Large-Scale Dynamics, Trends, IL Nuovo Cimento, Societ`a Italiana di Fisica, Vol. 29 C, N. 1,Gennaio-Febbraio

    Google Scholar 

  • Xoplaki E, Gonzalez-Rouco JF, Luterbacher J, Wanner H (2004) Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Clim Dyn 23:63–78. https://doi.org/10.1007/s00382-004-0422-0

    CrossRef  Google Scholar 

  • Xoplaki E (2002) Climate variability over the Mediterranean, Ph.D. thesis, Univ. of Bern, Bern, Switzerland

    Google Scholar 

  • Yakir D, Lev-Yadun S, Zangvil A (1996) El Nino and tree growth near Jerusalem over the last 20 years. Glob Change Biol 2:101–105

    Google Scholar 

  • Yosef Y, Hadas Saaroni, Pinhas Alpert (2009) Trends in Daily Rainfall Intensity Over Israel 1950/1-2003/4. The Open Atmospheric Science Journal 3:196–203

    Google Scholar 

  • Ziv B (2001) A subtropical rainstorm associated with a tropical plume over Africa and the Middle East. Theor Appl Clim 69(1/2):91–102

    Google Scholar 

  • Ziv B, Dayan U, Sharon D (2004b) A mid-winter, tropical extreme floodproducing storm in southern Israel: synoptic scale analysis. Meteorol Atmos Phys 10.1007/s00703-003-0054-7

    Google Scholar 

  • Zohdy H (1971) On the interaction between extratropical and tropical disturbances over Africa as seen from satellite pictures. Meteorological Department, Cairo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Mohamed Madkour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Madkour, K.M. (2022). The Frequency of Rare Cyclones in the Eastern Mediterranean and Northeastern Africa as a Sign of Climate Change Using Satellite Imagery, Climate Data Models and GIS-Based Analysis. In: Leal Filho, W., Manolas, E. (eds) Climate Change in the Mediterranean and Middle Eastern Region. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-030-78566-6_3

Download citation