Skip to main content

Species Distribution Based-Modelling Under Climate Change: The Case of Two Native Wild Olea europaea Subspecies in Morocco, O. e. subsp. europaea var. sylvestris and O. e. subsp. maroccana

Part of the Climate Change Management book series (CCM)

Abstract

Climate change is expected to greatly alter and modify the ecological conditions of plant growth and distribution, particularly in the Mediterranean Basin, considered as one of the most vulnerable zone to global warming in the world. In this chapter, we look at the biogeography of the olive tree, an emblematic species of the Mediterranean Basin, represented in Morocco by two wild subspecies: Olea europaea subsp. europaea var. sylvestris, the ancestor of all the olive varieties and widely distributed in the country, and Olea e. subsp. maroccana, endemic in a restricted southwestern area. We hypothesis, within the context of future warming, an increase of O. e. subsp. e. var. sylvestris distribution area is expected, while for O. e. subsp. maroccana, an alteration of its distribution is predicted, increasing seriously the risk of extinction. In order to assess the current and future potential geographic distribution of the two wild olive species in Morocco, a species distribution based-modelling was performed to understand the relationships between species distributions and climatic factors, on the basis of field data and 19 climatic variables. Two representative concentration pathways, RCP4.5 and RCP8.5, were used to forecast the future distribution of the two wild olive subspecies in 2050 and 2070. To avoid multicollinearity, the highly correlated climatic variables (r > 0.9, Pearson correlation coefficient) were deleted from the independent variables list. The Jackknife test was carried out to evaluate the relevance of the climatic variables for predictive modeling. The maximum entropy model for the current distribution of both species provides a satisfactory result, with a high value of the Area Under Curve equal to 0.980 (±0.001) for Olea europaea subsp. europaea var. sylvestris and equal to 0.997 (±0.001) for Olea europaea subsp. maroccana. Jackknife test indicates that precipitation and temperature variables play a significance role in wild olive species biogeographical dynamics in Morocco. The study results confirm our hypothesis of an expansion of O. e. subsp. e. var. sylvestris suitable area and the threatened aspect of Olea e. subsp. maroccana under climate change scenarios. The approach used in this study is promising to predict the potential distribution of wild olive species, and can be an effective tool to support conservation and restoration programs.

Keywords

  • Climate change
  • Maximum entropy (MaxEnt) model
  • Wild olive
  • Olea europaea subsp. europaea var. sylvestris
  • Olea europaea subsp. maroccana
  • Morocco

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-78566-6_2
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-78566-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP (2015) spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38:541–545. https://doi.org/10.1111/ecog.01132

    Google Scholar 

  • Ali N, Tavoillot J, Besnard G et al (2017) How anthropogenic changes may affect soil-borne parasite diversity? Plant-parasitic nematode communities associated with olive trees in Morocco as a case study. BMC Ecol 17:4. https://doi.org/10.1186/s12898-016-0113-9

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259(4):660–684. https://doi.org/10.1016/J.FORECO.2009.09.001

    CrossRef  Google Scholar 

  • Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species distributions: criteria for selecting optimal models. Ecol Model 162:211–232

    Google Scholar 

  • Ater M, Barbara H, Kassout J (2016) Importance des variétés locales, de l’oléastre et des pratiques traditionnelles de l’oléiculture dans la région de Chefchaouen (Nord du Maroc). In: Ater M, Essalouh L, Ilbert H, Moukhli A, Khadari B (eds) L’Oléiculture au Maroc de la préhistoire à nos jours: pratiques, diversité, adaptation, usages, commerce et politiques. CIHEAM—Options Méditerranéennes A, Montpellier, vol 118, pp 109–121

    Google Scholar 

  • Aumeeruddy-Thomas Y, Hmimsa Y, Ater M, Khadari B (2014) Beyond the divide betweeen wild and domesticated: spaciality, domesticity and practices pertaining to fig (Ficus carica L.) and olive (Olea europaea L.) agroecosystems among Jbala communities in Northern Morocco. In: Chevalier A, Marinova E, Peña-Chocarro L (eds) Plants and people. Choices and diversity through time. Oxbow Books, Oxford, pp 191–197

    Google Scholar 

  • Barbéro M, Quézel P, Rivas-Martínez S (1981) Contribution à l’étudedes groupements forestiers et préforestiers du Maroc. Phytocoenologia 9:311–412

    Google Scholar 

  • Belaj A, León L, Satovic Z, De La Rosa R (2011) Variability of wild olives (Olea europaea subsp. europaea var. sylvestris) analyzed by agromorphological traits and SSR markers. Sci Hortic 129:561–569

    Google Scholar 

  • Benabid A (1984) Etude phytoécologique des peuplements forestiers et préforestiers du Rif centro-occidental (Maroc). Institut scientifique Université Mohammed V, Rabat

    Google Scholar 

  • Benabid A (1985) Les écosystèmes forestiers préforestiers et présteppiques du Maroc: diversité, répartition biogéographique et problèmes posés par leur aménagement. Foret Mediterranéenne VII:53–64

    Google Scholar 

  • Benabid A, Fennane M (1994) Connaissances sur la végétation du Maroc: Phytogéographie, phytosociologie et séries de végétation. Lazaroa 14:21

    Google Scholar 

  • Besnard G, Khadari B, Navascués M et al (2013) The complex history of the olive tree: from Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proc R Soc B 280:20122833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Besnard G, Terral J-F, Cornille A (2017) On the origins and domestication of the olive: a review and perspectives. Ann Bot 121:385–403. https://doi.org/10.1093/aob/mcx145

  • Blondel J, Aronson J, Bodiou JY, Boeu G (2010) The Mediterranean region: biological diversity through time and space. Oxford University Press, Oxford, p 376

    Google Scholar 

  • Booth TH (2017) Assessing species climatic requirements beyond the realized niche: some lessons mainly from tree species distribution modelling. Clim Change 145:259–271

    ADS  Google Scholar 

  • Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model 275:73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012

    Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63(6):625–644

    Google Scholar 

  • Brotons L (2014) Species distribution models and impact factor growth in environmental journals: methodological fashion or the attraction of global change science. PLoSOne. https://doi.org/10.1371/journal.pone.0111996

    CrossRef  Google Scholar 

  • Carrión Y, Ntinou M, Badal E (2010) Olea europaea L. in the North Mediterranean Basin during the Pleniglacial and the Early-Middle Holocene. Quat Sci Rev 29:952–968

    ADS  Google Scholar 

  • Casalegno S, Amatulli G, Camia A, Nelson A, Pekkarinen A (2010) Vulnerability ofPinus cembra L. In the Alps and the Carpathian mountains under present and future climates. For Ecol Manage 259:750–761. https://doi.org/10.1016/j.foreco.2009.10.001

    CrossRef  Google Scholar 

  • Chapin FSI, Matson PA, Vitousek PM (2011) Principles of terrestrial ecosystem ecology, 2nd edn. Springer, New York

    Google Scholar 

  • Choat B, Jansen S, Brodribb TJ et al (2012) Global convergence in the vulnerability of forests to drought. Nature 491(7426):752–755. https://doi.org/10.1038/nature11688

    ADS  CAS  CrossRef  PubMed  Google Scholar 

  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58

    ADS  CAS  PubMed  Google Scholar 

  • Delong ER, Delong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

    CAS  MATH  PubMed  Google Scholar 

  • Doblas-Miranda E et al (2017) A review of the combination among global change factors in forests, shrublands and pastures of the Mediterranean Region: beyond drought effects. Glob Planet Change 148:42–54

    ADS  Google Scholar 

  • Donoghue MJ (2008) A phylogenetic perspective on the distribution of plant diversity. Proc Natl Acad Sci USA 105:11549–11555

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Donoghue MJ, Edwards EJ (2014) Biome shifts and niche evolution in plants. Annu Rev Ecol Evol Syst 45:547–572

    Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36:027–046. https://doi.org/10.1111/j.1600-0587.2012.07348.x

    CrossRef  Google Scholar 

  • Driouech F, Déqué M, Sanchez-Gomez E (2010) Weather regimes-Moroccan precipitation link in a regional climate change simulation. Global Planet Change 72:1–10

    ADS  Google Scholar 

  • Dullinger S et al (2012) Extinction debt of high-mountain plants under twenty-frst-century climate change. Nat Clim Chang 2:619–622

    ADS  Google Scholar 

  • Elith J et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 129–151

    Google Scholar 

  • Elith J, Burgman M (2002) Predictions and their validation: rare plants in the Central Highlands, Victoria, Australia. In: Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, USA, pp 303–313

    Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Systemat 40:677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

    CrossRef  Google Scholar 

  • Emberger L (1971) Carte phytogéographique du Maroc. Masson et Cie

    Google Scholar 

  • Escalante T, Rodríguez-Tapia G, Linaje M, Illoldi-Rangel P, González-López R (2013) Identification of areas of endemism from species distribution models: threshold selection and Nearctic mammals. TIP Revista Especializada en Ciencias Químico-Biológicas 16:5–17

    Google Scholar 

  • Fick S, Hijmans R (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Google Scholar 

  • Fisher RA, Koven CD, Anderegg WRL, Christoffersen BO, Dietze MC, Farrior CE et al (2018) Vegetation demographics in earth system models: a review of progress and priorities. Glob Chang Biol 24:35–54

    ADS  PubMed  Google Scholar 

  • Forzieri G, Miralles DG, Ciais P et al (2020) Increased control of vegetation on global terrestrial energy fluxes. Nat Clim Chang 10:356–362. https://doi.org/10.1038/s41558-020-0717-0

    ADS  CrossRef  Google Scholar 

  • Frank SA (2011) Natural selection. II. Developmental variability and evolutionary rate. J Evol Biol 24:2310–2320

    CAS  PubMed  Google Scholar 

  • Franklin J (2009) Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Garcia-Verdugo C, Fay MF, Granado-Leal C, De Casas RR, Balaguer L, Besnard G, Vargas P (2009) Genetic diversity and differentiation processes in the ploidy series of Olea europaea L.: a multiscale approach from subspecies to insular populations. Mol Ecol 18(3):454–467

    Google Scholar 

  • Gates DM (1980) Biophysical ecology. Springer-Verlag, Berlin, p 611

    Google Scholar 

  • GBIF. Global biodiversity information facility. Available at: http://www.gbif.org/. Accessed 13 May 2020

  • Gent PR et al (2011) The community climate system model version 4. J Climate 24:4973–4991. https://doi.org/10.1175/2011JCLI4083.1

    ADS  CrossRef  Google Scholar 

  • Gianguzzi L, Bazan G (2019) The Olea europaea L. var. sylvestris(Mill.) Lehr. forests in the Mediterranean area. Plant Sociol 56:3–34. https://doi.org/10.7338/pls2019562/01

    CrossRef  Google Scholar 

  • Gibelin A-L, Déqué M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dyn 20(4):327–339. https://doi.org/10.1007/s00382-002-0277-1

    CrossRef  Google Scholar 

  • Graham MH (2003) Confronting multi-collinearity in ecological multiple regression. Ecology 84:2809–2815

    Google Scholar 

  • Green PS (2002) A revision of Olea (Oleaceae). Kew Bull 57:91–140

    Google Scholar 

  • Green PS, Wickens GE (1989) The Olea europaea complex. In: The Davis and Hedge Festschrift (ed) Kit an. Edinburgh University press, pp 287–299

    Google Scholar 

  • Guisan A, Tuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    PubMed  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Modell 135:147–186

    Google Scholar 

  • Guisan A et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435

    PubMed  PubMed Central  Google Scholar 

  • Guisan A, Thuiller W, Zimmermann NE (2017) Habitat suitability and distribution models. With applications in R. Cambridge University Press, Cambridge

    Google Scholar 

  • Harte J (2011) Maximum entropy and ecology: a theory of abundance, distribution, and energetics. Oxford University Press, London

    MATH  Google Scholar 

  • Harte J et al (2008) Maximum entropy and the state variable approach to macroecology. Ecology 89:2700–2711

    CAS  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Google Scholar 

  • Hmimsa Y, Ater M (2008) Agrodiversity in the traditional agrosystems of the Rif mountains (North of Morocco). Biodiversity 9(1–2):78–81

    Google Scholar 

  • Ionesco T, Sauvage C (1969) Fichier des espèces climax. Al Awamia, pp 105–124

    Google Scholar 

  • IPCC (2014) In: Core Writing Team, Pachauri RK, Meyer LA (eds) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, p 151

    Google Scholar 

  • Kaniewski D, Van Campo E, Boiy T, Terral JF, Khadari B, Besnard G (2012) Primary domestication and early uses of the emblematic olive tree: palaeobotanical, historical and molecular evidences from the Middle East. Biol Rev 87:885–899

    PubMed  Google Scholar 

  • Kassa A, Konrad H, Geburek T (2019) Molecular diversity and gene flow within and among different subspecies of the wild olive (Olea europaea L.): a review. Flora 250:18–26

    Google Scholar 

  • Kassout J (2019) Réponse de traits fonctionnels foliaires et anatomiques chez l’olivier sauvage (Olea europaea L.) dans un environnement hétérogène et changeant: le modèle du Maroc soumis aux changements globaux. Biologie végétale. Université de Montpellier (France), Université Abdelmalek Essaâdi (Maroc) Thèse de doctorat

    Google Scholar 

  • Kassout J, Barbara H, Ivorra S, Terral J-F, Ater M (2016) Etude préliminaire de la variation de caractères anatomiques du bois d’une forme spontanée et de sept variétés traditionnelles d’olivier (Olea europaea L.) de la région Nord du Maroc (Chefchaouen et Ouazzane). In: Ater M, Essalouh L, Ilbert H, Moukhli A, Khadari B (eds) L’Oléiculture au Maroc de la préhistoire à nos jours: pratiques, diversité, adaptation, usages, commerce et politiques. CIHEAM—Options Méditerranéennes A, Montpellier, vol 118, pp 109–121

    Google Scholar 

  • Kassout J, Terral J-F, Hodgson J, Ater M (2019) Trait-based plant ecology a flawed tool in climate studies? The leaf traits of wild olive that pattern with climate are not those routinely measured. PLoS ONE 14(7): https://doi.org/10.1371/journal.pone.0219908

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kurpis J, Serrato-Cruz MA, Arroyo TPF (2019) Modeling the effects of climate change on the distribution of Tagetes lucida Cav. (Asteraceae). Glob Ecol Conserv 20:11

    Google Scholar 

  • Kwon H, Kim B, Jang G (2016) Modelling the spatial distribution of wildlife animals using presence and absence data. Contemp Probl Ecol 9:515–518

    Google Scholar 

  • Lenoir J, Gégout JC, Marquet PA, De RP, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771

    ADS  CAS  PubMed  Google Scholar 

  • Lenoir J, Gégout J-C, Guisan A et al (2010) Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography 33(2):295–303. https://doi.org/10.1111/j.1600-0587.2010.06279.x

    CrossRef  Google Scholar 

  • Li GQ, Du S, Wen ZM (2016) Mapping the climatic suitable habitat of oriental arborvitae (Platycladus orientalis) for introduction and cultivation at a global scale. Sci Rep, UK, p 6

    Google Scholar 

  • Liu C, Berry P, Dawson T, Pearson R (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Google Scholar 

  • Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40:778–789. https://doi.org/10.1111/jbi.12058

  • Liu N, Feng Y, Guan KY (2016) Potential distribution prediction of Calligonum L. in China. J Arid Land Resour Environ. 30(3):112–120. https://doi.org/10.13448/j.cnki.jalre.2016.089

  • Lionello P, Scarascia L (2018) The relation between climate change in the Mediterranean region and global warming. Reg Environ Chang 18:1481–1493. https://doi.org/10.1007/s10113-018-1290-1

    Google Scholar 

  • Lloret F, de la Riva EG, Pérez-Ramos IM, Marañón T, Saura-Mas S, Díaz-Delgado R, Villar R (2016) Climatic events inducing die-off in Mediterranean shrublands: are species’ responses related to their functional traits? Oecologia 180(4):961–973. https://doi.org/10.1007/s00442-016-3550-4

    ADS  CrossRef  PubMed  Google Scholar 

  • López-Tirado J, Vessella F, Stephan J et al (2020) Effect of climate change on potential distribution of Cedrus libani A. Rich in the twenty-first century: an Ecological Niche Modeling assessment. New Forests. https://doi.org/10.1007/s11056-020-09798-y

    CrossRef  Google Scholar 

  • Madani N, Kimball JS, Ballantyne AP, Affleck DLR, van Bodegom PM, Reich PB et al (2018) Future global productivity will be affected by plant trait response to climate. Sci Rep 8:2870

    ADS  PubMed  PubMed Central  Google Scholar 

  • Matesanz S, Valladares F (2014) Ecological and evolutionary responses of Mediterranean plants to global change. Environ Exp Bot 103:53–67. https://doi.org/10.1016/J.ENVEXPBOT.2013.09.004

    CrossRef  Google Scholar 

  • Médail F, Quézel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Ann Mo Bot Gard 84:112–127

    Google Scholar 

  • Médail F, Quézel P, Besnard G, Khadari B (2001) Systematics, ecology and phylogeographic significance of Olea europaea L. subsp. maroccana (Greuter & Burdet) P. Vargas et al. a relictual olive tree from South West Morocco. Bot J Linn Soc 137:249–266

    Google Scholar 

  • Meng YH, Xu X, Jing XL, Xu GB (2018) Potential distribution modeling and analysis of Disanthus Maxim. Actae Ecol Sin 39:2816–2825

    Google Scholar 

  • Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography

    Google Scholar 

  • Michaletz ST, Weiser MD, Zhou J, Kaspari M, Helliker BR, Enquist BJ (2015) Plant thermoregulation: energetics, trait-environment interactions, and carbon economics. Trends Ecol Evol 30:714–724. https://doi.org/10.1016/j.tree.2015.09.006

    CrossRef  PubMed  Google Scholar 

  • Moles AT, Perkins SE, Laffan SW et al (2014) Which is a better predictor of plant traits: temperature or precipitation? J Veg Sci 25:1167–1180

    Google Scholar 

  • Moukrim S, Lahssini S, Rhazi M et al (2019) Climate change impacts on potential distribution of multipurpose agro-forestry species: Argania spinosa (L.) Skeels as case study. Agroforest Syst 93:1209–1219. https://doi.org/10.1007/s10457-018-0232-8

    CrossRef  Google Scholar 

  • Mousavi S, Mariotti R, Bagnoli F, Costantini L, Cultrera NG, Arzani K, Pandolfi S, Vendramin GG et al (2017) The eastern part of the Fertile Crescent concealed an unexpected route of olive (Olea europaea L.) differentiation. Ann Bot 119:1305–1318

    PubMed  PubMed Central  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858. https://doi.org/10.1038/35002501

    ADS  CAS  CrossRef  PubMed  Google Scholar 

  • Palamarev E (1989) Palaeobotanical evidences ofthe Tertiary history and origin of the Mediterranean schlerophyll dendroflora. Plant Syst Evol 162:93107

    Google Scholar 

  • Parmesan C, Hanley ME (2015) Plants and climate change: complexities and surprises. Ann Bot 116:849–864. https://doi.org/10.1093/aob/mcv169

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42. https://doi.org/10.1038/nature01286

    ADS  CAS  CrossRef  PubMed  Google Scholar 

  • Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245

    Google Scholar 

  • Pecchi M, Marchi M, Burton V, Giannetti F, Moriondo M, Bernetti I, Bindi Mb Chirici G (2019) Species distribution modelling to support forest management. A Lit Rev 2(411):1–12

    Google Scholar 

  • Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW et al (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501

    ADS  CAS  PubMed  Google Scholar 

  • Peterson AT et al (2011) Ecological niches and geographic distributions, monographsin population biology No 49. Princeton University Press, Princeton, NJ, USA

    Google Scholar 

  • Petitpierre B, MacDougall K, Seipel T, Broennimann O, Guisan A, Kueffer C (2015) Will climate change increase the risk of plant invasions into mountains? Ecol Appl 26:530–544

    Google Scholar 

  • Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the 21st international conference on machine learning. Association for Computing Machinery, Banff, Canada, p 83

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    CrossRef  Google Scholar 

  • Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017a) Opening the black box: an open-source release of Maxent. Ecography 40(7):887–893

    Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE (2017b) Maxent sofware for modeling species niches and distributions (Version3.4.1). Available at: www.biodiversityinformatics.amnh.org/open_source/maxent/. Accessed: 8 May 2020

  • Polade SD, Pierce DW, Cayan DR, Gershunov A, Dettinger MD (2014) The key role of dry days in changing regional climate and precipitation regimes. Sci Rep 4(1):4364. https://doi.org/10.1038/srep04364

    ADS  CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • QGIS Development Team (2012) QGIS geographic information system. Open Source Geospatial Foundation Project. Available at: http://qgis.org

  • Qin AL, Liu B, Guo QS, Bussmann RW, Ma F, Jian ZJ, Xu GX, Pei SX (2017) Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch. An extremely endangered conifer from southwestern China. Glob Ecol Conserv 10:139e146

    Google Scholar 

  • Rubio De Casas R, Balaguer L, Manrique E, Pérez ME, Vargas P (2002) On the historical presence of the wild olives Olea europaea L. var. sylvestris (Miller) Leh. In: the Eurosiberian North of the Iberian Peninsula. An del Jardín Botánico, Madrid

    Google Scholar 

  • Sala OE, Chapin FSI, Armesto JJ, Berlow E, Bloomfield J et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    CAS  PubMed  Google Scholar 

  • Schröder B (2008) Challenges of species distribution modeling belowground. J Plant Nutr Soil Sci 171:325–337. https://doi.org/10.1002/jpln.200700027

    CAS  CrossRef  Google Scholar 

  • Shipley B, Laughlin DC, Sonnier G, Otfinowski R (2011) A strong test of a maximum entropy model of trait- based community assembly. Ecology 92:507–517

    PubMed  Google Scholar 

  • Sinclair S, White M, Newell G (2010) How useful are species distribution models for managing biodiversity under future climates. Ecol Soc 15:8

    Google Scholar 

  • Sonnier G, Shipley B, Navas ML (2010) Plant traits, species pools and the prediction of relative abundance in plant communities: a maximum entropy approach. J Vegetable Sci 21:318–331

    Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/

  • Taleb MS, and Fennane M (2019) Vascular plant communities of Morocco, Phytoecology, Ecology and Geography. Springer International Publishing, p 161

    Google Scholar 

  • Terral J-F, Badal E, Heinz C, Roiron P, Thiébault S, Figueiral I (2004) A hydraulic conductivity model points to post-Neogene survival of the Mediterranean Olive in riparian habitat. Ecology 85(11):3158–3165. https://doi.org/10.1890/03-3081

    CrossRef  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC et al (2004) Extinction risk from climate change. Nature 427:145–148

    ADS  CAS  PubMed  Google Scholar 

  • Thuiller W, Lavorel S, Araujo MB (2005) Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob Ecol Biogeogr 14(4):347–357. https://doi.org/10.1111/j.1466-822X.2005.00162.x

    CrossRef  Google Scholar 

  • UNEP (1997) World Atlas of desertification. Middleton L, Thomas D (eds), 2nd edn. Arnold, London, 182 p

    Google Scholar 

  • van Bodegom PM, Douma JC, Verheijen LM (2014) A fully traitsbased approach to modeling global vegetation distribution. Proc Natl Acad Sci USA 111:13733–13738. https://doi.org/10.1073/pnas.1304551110

    ADS  CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Vellend M, Baeten L, Becker-Scarpitta A, Boucher Lalonde V, McCune J, Messier J et al (2017) Plant biodiversity change across scales during the Anthropocene. Annu Rev Plant Biol 68:563–586

    CAS  PubMed  Google Scholar 

  • White EP et al (2012) Characterizing species abundance distributions across taxa and ecosystems using a simple maximum entropy model. Ecology 93:1772–1778

    PubMed  Google Scholar 

  • Yang XQ, Kushwaha SPS, Saran S, Xu J, Roy PS (2013) Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol Eng. https://doi.org/10.1016/j.ecoleng.2012.12.004

    CrossRef  Google Scholar 

  • Ye XZ, Zhao GH, Zhang MZ, Cui XY, Fan HH, Liu B (2020) Distribution pattern of endangered plant Semiliquidambar cathayensis (Hamamelidaceae) in response to climate change after the last interglacial period. Forests 11:434. https://doi.org/10.3390/f11040434

    CrossRef  Google Scholar 

  • Yi YJ, Cheng X, Yang ZF, Zhang SH (2016) Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol Eng 260–269

    Google Scholar 

  • Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the old world: the origin and spread of cultivated plants in Southwest Asia, Europe, and the Mediterranean Basin. Oxford University Press, Oxford

    Google Scholar 

Download references

Funding

This research was supported by the EcoGenOlea international program (2015–2017), the Associated International Laboratory (IRP) EVOLEA (INEE-CNRS France/CNRST Morocco), Toubkal grants (15/04, n˚ 32525WH) and the Moroccan Excellency research Grants (024UAE2014).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kassout, J. et al. (2022). Species Distribution Based-Modelling Under Climate Change: The Case of Two Native Wild Olea europaea Subspecies in Morocco, O. e. subsp. europaea var. sylvestris and O. e. subsp. maroccana. In: Leal Filho, W., Manolas, E. (eds) Climate Change in the Mediterranean and Middle Eastern Region. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-030-78566-6_2

Download citation