Skip to main content

The Conservation Challenge of Traditional Agroecosystems in Morocco: The Case Study of Six Oases Agroecosystems

  • 359 Accesses

Part of the Climate Change Management book series (CCM)

Abstract

Global changes, caused by anthropogenic activities, are imposing serious and growing challenges for both natural and human systems. For instance, climate change and the emergence of global diseases, as the recent pandemic of coronavirus (Covid-19), greatly affecting economic and social stability of many vulnerable communities worldwide. Traditional agroecosystems (TAE) are remarkable adaptations of crop production systems that ensure the balance of human-nature interactions. However, the abovementioned challenges are already affecting the basic foundation of crop production and rural livelihoods in TAE particularly within arid African and MENA regions. In this context, we hypothesize that these agroecosystems are playing a key role in maintaining and strengthening the resilience of human-nature systems. To verify this later, prospective surveys were conducted in six major traditional oases agroecosystems (TOAE) in southern Morocco (Alnif, Zagora, Aoufous, Rich, Guelmim and Tata oases) to describe and analyse the status of their agro-diversity considering climatic trends and characteristics. The primary results revealed that the studied TOAE are structured on a multi-strata cropping system embracing more than 180 different crops including palm trees (50), cereals (29), legumes and vegetables (42). Almond, olive and fig trees are major elements of arboreal strata. In addition, the results show that TOAE are cornerstones for maintaining both genetic resources conservation, as well as an important driver for local socio-economic resilience. Nevertheless, the vulnerable aspects of TOAE in the current context of climate change is undeniable. This study represents a basic initiative to value many neglected and poorly studied components of TAE and provides potential head-points for future agricultural adaptation programmes to counter global change impacts and ensure a sustainable development of such arid agro-ecosystems.

Keywords

  • Traditional oases agroecosystems
  • Agrodiversity
  • Climate change
  • Morocco
  • Biodiversity conservation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-78566-6_10
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-78566-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    Represent agglomerative area inside the oasis.

  2. 2.

    Represent the main river.

References

  • Abul-Soad AA, Jain SM, Jatoi MA (2017) Biodiversity and conservation of date palm. In: Ahuja MR, Jain SM (eds) Biodiversity and conservation of woody plants, vol 17. Springer International Publishing, Switzerland, pp. 313–353. Sustain Dev Biodivers

    Google Scholar 

  • Achtak H, Ater M, Oukabli A, Santoni S, Kjellberg F, Khadari B (2010) Traditional agroecosystems as conservatories and incubators of cultivated plant varietal diversity: the case of Fig (Ficus carica L.) in Morocco. BMC Plant Biol 18:10–28

    Google Scholar 

  • Ait Hmida A (2003) Système de production et stratégies des agriculteurs dans les oasis de la région d’Errachidia au Maroc. New Medit 2:37–43

    Google Scholar 

  • Aljane F, Elbekkay M, Hichem Neily M, Hamza H (2017) Prospecting and inventory of agro-diversity in the traditional oases of Gafsa. J New Sci Agric Biotechnol CSIEA 10:2671–2677

    Google Scholar 

  • Allam A, Tirichine A, Cheloufi H, Arif Y, Tama M, Mimouni A (2013) Etude de la diversité biologique des espèces maraichères cultivées dans les palmeraies de la vallé d’Oued Righ (Cas de la région de Tougourt). BioRessources 03:64–71

    CrossRef  Google Scholar 

  • Ater M, Hmimsa Y (2008) Agriculture traditionnelle et agrodiversité dans le bassin versant de l’Oued Laou (Maroc). Travaux De L’institut Scientifique : Série Générale 5:107–115

    Google Scholar 

  • Ater M, Hmimsa Y (2013) Agrodiversité des agroécosystèmes traditionnels du pays Jbala (rif, Maroc) et produit de terroirs. In: Ilbert H, Tekelioglu Y, Çagatay S, Tozanli S (eds) Options Méditerranéennes, A 104—Indications Géographiques, dynamiques socio-économiques et patrimoine bio-culturel en Turquie et dans les pays méditerranéens. CIHEAM, Montpellier, France, pp 197–208

    Google Scholar 

  • Ater M, Barbara H, Kassout J (2016) Importance des variétés locales, de l’oléastre et des pratiques traditionnelles de l’oléiculture dans la région de Chefchaouen (Nord du Maroc). In: Ater M, Essalouh L, Ilbert H, Moukhli A, Khadari B (eds) L’oléiculture au Maroc de la préhistoire à nos jours: Pratiques, Diversité, Adaptation, Usages, Commerce et Politiques. Options Méditerranéennes A, vol 118. CIHEAM, Montpellier, France, pp 109–121

    Google Scholar 

  • Bagnouls F, Gaussen H (1953) Saison sèche et indice xérothermique. Document Pour Les Cartes Des Prod Veget Serie: Généralité 1:1–49

    Google Scholar 

  • Barontini S, Boselli V, Louki A, Ben Slima Z, Ghaouch F-E, Labaran R, Raffelli G, Peli M, Al Ani AM Vitale N et al (2017) Bridging mediterranean cultures in the international year of soils 2015: a documentary exhibition on irrigation techniques in water scarcity conditions. Hydrol Res 48:789–801. https://doi.org/10.2166/nh.2017.113

  • Battesti V (2012) The power of a disappearance: water in the Jerid region of Tunisia In: Johnston BR et al (eds) Water, cultural diversity, and global environmental change: emerging trends, sustainable futures? UNESCO/Springer, Paris, Jakarta, pp 77–96. Available at: http://hal.archivesouvertes.fr/hal-00569337

  • Bazuhair SA, Al-Gohani A, Şen Z (1997) Determination of monthly wet and dry periods in Saudi Arabia. Int J Climatol 17:303–311

    CrossRef  Google Scholar 

  • Belarbi A, Bouayad A, Diaou M, Kaassis N, Tidjani Maliki M (2004) Agrobiodiversité et durabilité des systèmes de production oasiens dans la palmeraie d’Aoufouss. Errachidia-Maroc, IRCA/INRA-Maroc, p 167

    Google Scholar 

  • Benaoun A, Elbakkay M, Ferchichi A (2014) Change of oases farming systems and their effects on vegetable species diversity: cas of oasian agro-systems of Nefzaoua (South of Tunisia). Sci Hortic 180:167–175

    CrossRef  Google Scholar 

  • Bodian A, El Houmaizi MA, Ndoye Ndir K, Hasnaoui A, Nachtigall M, Wehling P (2012) Genetic diversity analysis of date palm (Phoenix dactylifera L.) cultivars from Figuig oasis (Morocco) using SSR markers. IJSAT 2(3):96–104

    Google Scholar 

  • Boselli V, Ouallali A, Briak H, Houssni M, Kassout J, El Ouahrani A, Michailidi EM (2020) System dynamics applied to terraced agroecosystems: the case study of Assaragh (Anti-Atlas Mountains, Morocco). Water 12:1693

    CrossRef  Google Scholar 

  • Brookfield H, Padoch C (1994) Appreciating agrodiversity: a look at the dynamism and diversity of indigenous farming practices. Environment 36(5):8–11

    Google Scholar 

  • Brookfield H, Stocking M (1999) Agrodiversity: definition, description and design. Glob Environ Change 9(2):77–80

    CrossRef  Google Scholar 

  • Brush SB (1995) (1995) In situ conservation of landraces in centers of crop diversity. Crop Sci 35:346–354

    CrossRef  Google Scholar 

  • Buytaert W, Friesen J, Liebe J, Ludwig R (2012) Assessment and management of water resources in developing, semi-arid and arid regions. Water Resour Manag 26:841–844. https://doi.org/10.1007/s11269-012-9994-3

  • Chao CCT, Krueger RR (2007) The date palm (Phoenix dactylifera L.): overview of biology, uses, and cultivation. Hort Sci 42(5):1077–1082. https://doi.org/10.21273/HORTSCI.42.5.1077

  • Campbell-Lendrum D, Wheeler N, Maiero M, Villalobos Prats E, Nevelle T (2018) World Health Organization COP24 special report on health and climate change. World Health Organization. Available at: https://unfccc.int/sites/default/files/resource/WHO%20COP24%20Special%20Report_final.pdf

  • Dixon GR (2012) Climate change—impact on crop growth and food production, and plant pathogens. Can J Plant Path 34(3):362–379

    CrossRef  Google Scholar 

  • Driouech F, Déqué M, Sanchez-Gomez E (2010) Weather regimes-Moroccan precipitation link in a regional climate change simulation. Global Planet Change 72:1–10

    CrossRef  ADS  Google Scholar 

  • Earthdata (2020) Earthdata Search. Available at: https://earthdata.nasa.gov/. Accessed on 23 May 2020

  • Elhoumaizi MA, Devanand PS, Fang J, Chao CT (2006) Confirmation of ‘Medjool’ date as a landrace variety through genetic analysis of ‘Medjool’ accessions in Morocco. J Am Soc Hortic Sci 131:403–407. https://doi.org/10.21273/JASHS.131.3.403

  • Ellis EC (2011) Anthropogenic transformation of the terrestrial biosphere. Philos Trans Ser A Math Phys Eng Sci 369:1010–1035

    ADS  Google Scholar 

  • Ferjani R, Marasco R, Rolli E, Cherif H, Cherif A, Gtari M, Boudabous A, Daffonchio D, Ouzari HI (2015) The date palm tree rhizosphere is a niche for plant growth promoting bacteria in the oasis ecosystem. BioMed Res Int 2015:153851 https://doi.org/10.1155/2015/153851

  • Food and Agriculture Organization (2015) FAO and the 17 Sustainable Development Goals Food and Agriculture Organisation of the United Nations: Rome, Italy

    Google Scholar 

  • Food and Agriculture Organization (2016) Food and Agriculture: Key to Achieving the 2030 Agenda for Sustainable Development; Food and Agriculture Organization of the United Nations: Rome Italy

    Google Scholar 

  • Fuhrer (2003) Review: agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agric Ecosyst Environ 97:1–20. https://doi.org/10.1016/S0167-8809(03)00125-7

  • Gaudin ACM, Tolhurst TN , Ker AP, Janovicek K , Tortora C, Martin RC, Deen W (2015) Increasing crop diversity mitigates weather variations and imporves yield stability. PLos ONE 10. https://doi.org/10.1371/journal.pone.0113261

  • Gill BS, Raupp WJ, Friebe B (2014) Dual threats of imperiled native agroecosystems and climate change to world food security: genomic perspectives. J Crop Improv 28:88–98

    CrossRef  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the mediterranean region. Global Planet Change 63(2–3):90–104

    CrossRef  ADS  Google Scholar 

  • Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D et al (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

    CAS  CrossRef  ADS  PubMed  Google Scholar 

  • Goudie A (2013) In: Goudie AS (ed) The human impact on the natural environment: past, present and future, 7th ed. Wiley, p 376

    Google Scholar 

  • Gros-Balthazard M (2013) Hybridization in the genus phoenix: a review. Emir J Food Agric 25:831–842

    CrossRef  Google Scholar 

  • Hambler C (2004) Conservation. Cambridge University Press, Cambridge, p 14. ISBN 0-521-80190-7

    Google Scholar 

  • Hamidi MH (2005) Dynamiques agraires et perspectives d’actions de développement rural des bassins versants des oasis de Tafilalet, province d’Errachidia, (Maroc). Mémoire d’Ingénieur des techniques agricoles de Clermont Ferrand, p 116

    Google Scholar 

  • Hammer K, Perrino P (1985) A check-list of the cultivated plants of the Ghat oases. Kulturpflanze 33:269–286

    CrossRef  Google Scholar 

  • Hammer K, Lehmann CO, Perrino P (1988) A check-list of the Libyan cultivated plants including an inventory of the germplasm collected in the years 1981, 1982 and 1983. Kulturpflanze 36:475–527

    CrossRef  Google Scholar 

  • Harrak H, Hamouda A, Nadi M (2018) Évaluation et amélioration de la qualité des pâtes traditionnelles de dattes, produits du terroir des oasis. Cah Agric 27:15001. https://doi.org/10.1051/cagri/2017057

  • Hmimsa Y, Ater M (2008) Agrodiversity in the traditional agrosystems of the Rif mountains (North of Morocco). Biodiversity 9(1–2):78–81

    CrossRef  Google Scholar 

  • Houssni M, El Mahroussi M, Ben Sbih H, Kadiri M, Ater M (2020) Agriculture traditionnelle et agrodiversité dans les oasis du Sud du Maroc: cas des oasis de la région Drâa-Tafilalet. In: El Moujabber M, Belhouchette H, Belkhodja M, Kalaitzis P (eds) Research and innovation as tools for sustainable agriculture food and nutrition security. Options méditerranéennes A, vol 124(2). CIHEAM, Bari, Italy, pp 82–88

    Google Scholar 

  • ICSU (2015) Review of targets of the sustainable development goals: the science perspective. International Council for Science (ICSU), Paris, France, pp 31–34

    Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. In: Pachauri RK, Reisinger A (eds) Core writing team, contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC Geneva, Switzerland, p 104

    Google Scholar 

  • IPCC (2014) In: Pachauri RK, Meyer LA (eds) Core writing team, climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC Geneva, Switzerland, p 151

    Google Scholar 

  • Kabiri L (2014) Etude comparative des modes de gestion, de conservation et de valorisation des ressources naturelles des oasis et des zones désertiques des pays de MENA DELP. Projet MENA-DELP (Projet de coordination et de partage des connaissances sur les moyens de subsistance et les écosystèmes désertiques, au profit de l’Algérie, Egypte, Jordanie, Maroc et Tunisie), p 228

    Google Scholar 

  • Khadari B, Charafi J, Moukhli A, Ater M (2008) Substantial genetic diversity in cultivated Moroccan olive despite a single major cultivar: a paradoxical situation evidenced by the use of SSR loci. Tree Genet Genomes 4:213–221. https://doi.org/10.1007/s11295-007-0102-4

  • Khoshbakht K, Hammer K (2008) How many plant species are cultivated? Genet Resour Crop Evol 55(7):925–928. https://doi.org/10.1007/s10722-008

    CrossRef  Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130

  • Lauri P, Barkaoui K, Ater M, Rosati A (2019) Agroforestry for fruit trees in the temperate Europe and dry Mediterranean. In: Mosquera-Losada MR, Prabhu R (eds) Agroforestry for sustainable agriculture. Burleigh Dodds Science Publishing, Cambridge, UK, pp 385–418. ISBN 978 1 78676 220 7. Available at: www.bdspublishing.com

  • Lightfoot DR (1996) Moroccan Khettara: traditional irrigation and progressive desiccation. Geoforum 27:261–273. https://doi.org/10.1016/0016-7185(96)00008-5

  • Madani N, Kimball JS, Ballantyne AP, Afleck DL, Bodegom PM, Reich PB (2018) Future global productivity will be affected by plant trait response to climate. Sci Rep 8:2870

    CrossRef  ADS  PubMed  PubMed Central  Google Scholar 

  • Malek Ž, Verburg PH, Geijzendorffer R, Bondeau A, Cramer W (2018) Global change effects on land management in the Mediterranean region. Glob Environ Chang 50:238–254

    CrossRef  Google Scholar 

  • Manzanedo RD, Manning P (2020) COVID-19: lessons for the climate change emergency. Sci Total Environ 742(10):140563

    Google Scholar 

  • McMichael AJ, Campbell-Lendrum DH, Corvalan CF, Ebi KL, Githeko A, Scheraga JD, Woodward A (2003) Climate change and human health: risks and responses. World Health Organisation, p 322

    Google Scholar 

  • Meyer RS, Du Val AE, Jensen HR (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196:29–48

    CrossRef  PubMed  Google Scholar 

  • Mosqueira MJ, Marasco R, Fusi M, Michoud G, Merlino G, Cherif A, Daffonchio D (2019) Consistent bacterial selection by date palm root system across heterogeneous desert oasis agroecosystems. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-40551-4

  • Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J, De Palma A, Díaz S, Echeverria-Londoño S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DLP, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JPW, Purvis A (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50. https://doi.org/10.1038/nature14324

    CAS  CrossRef  ADS  PubMed  Google Scholar 

  • Polade SD, Pierce DW, Cayan DR, Gershunov A, Dettinger MD (2014) The key role of dry days in changing regional climate and precipitation regimes. Sci Rep 4(1):4364. https://doi.org/10.1038/srep04364

    CAS  CrossRef  PubMed  PubMed Central  ADS  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    CrossRef  Google Scholar 

  • Persson GM, Ramanathan LM, Reyers V, Sorlin B (2015) Planetary boundaries: guiding human development on a changing planet. Science 347(6223):1259855

    CrossRef  PubMed  Google Scholar 

  • Quantum Gis Development Team (2015) Système d’Information Géographique Libre et Open Source. Available at: https://www.qgis.org/fr

  • Rapsomanikis G (2015) The economic lives of smallholder farmers—an analysis based on household data from nine countries. Organisation of the United Nations, Rome, Italy

    Google Scholar 

  • R Development Core Team (2015) R: The R Project for Statistical Computing. Available at: https://www.r-project.org/

  • Saadi S, Todorovic M, Tansijevic L, Pereira LS, Pizzigali C, Lionello P (2014) Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agric Water Manag 147(1):103–115

    Google Scholar 

  • Santoro A, Venturi M, Ben Maachia S, Benyahia F, Corrieri F, Piras F, Agnoletti M (2020) Agroforestry heritage systems as agrobiodiversity hotspots. The case of the mountain oases of Tunisia. Sustainability 12(4054):1–180. Available at: https://doi.org/10.3390/su12104054

  • Sbaï L (2011) Oasis du Maroc: Cadre Juridique et Institutionnel. IUCN, p 70

    Google Scholar 

  • Shaheen S, Ahmad M, Haroon N (2017) Food security: a global problem. In: Edible wild plants: an alternative approach to food security. Springer, Cham. https://doi.org/10.1007/978-3-319-63037-3 1

  • Sedra MH (2003) Le Palmier Dattier base de la mise en valeur des oasis au Maroc Techniques phoénicicoles et Création d’oasis. Inra Eds., Rabat, Maroc, p 265

    Google Scholar 

  • Şen Z (2008) Wadi Hydrology, 1st ed. CRC Press, Taylor & Francis Group, Boca Raton, FL, USA, p 347

    Google Scholar 

  • Steffen W, Crutzen J, McNeill JR (2007) The Anthropocene: are humans now overwhelming the great forces of nature? AMBIO J Human Environ 36(8):614–621. https://doi.org/10.1579/0044-7447(2007)

  • Steffen W, Richardson K, Rockstrom J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA et al (2015) Planetary boundaries: guiding human development on a changing planet. Science 347(6223):1259855

    CrossRef  PubMed  Google Scholar 

  • Sraïri MT, M’ghar FA, Benidir M, Bengoumi M (2017) Analyse typologique de la diversité et des performances de l’élevage oasien. Cah Agric 26:15005

    Google Scholar 

  • Terral J-F, Newton C, Ivorra S, Gros-Balthazard M, Tito de Morais C, Picq S, Tengberg M, Pintaud J-C (2012) First insights into the complex structure of date palm agrobiodiversity (Phoenix dactylifera L.) and history of ancient Egyptian cultivated forms assessed by geometric morphometrical analysis of modern and archaeological seeds. J Biogeogr 39(5):929–941

    Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108(50):20260–20264

    CAS  CrossRef  ADS  PubMed  PubMed Central  Google Scholar 

  • Toutain G, Bachra A, Chari A (1971) Cartographie Variétale de la Palmeraie Marocaine. Technical Report; Direction de la Recherche Agronomique, Rabat, Maroc, p 242

    Google Scholar 

  • United Nations (2015) Transforming our world: the 2030 agenda for sustainable development. In: A/RES/70/1. United Nations, New York, NY, USA

    Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    CAS  CrossRef  Google Scholar 

  • Weitz N, Nilsson M, Davis M (2014) Anexus approach to the post-2015 agenda: formulating integrated water, energy and food SDGs. SAIS Rev Int Aff 34:37–50

    CrossRef  Google Scholar 

  • Wezel A, Casagrande M, Celette F, Vian J, Ferrer A, Peigné J (2014) Agroecological practices for sustainable agriculture. A review. Agron Sustain Dev 34:1–20. https://doi.org/10.1007/s13593-013-0180-7

    CrossRef  Google Scholar 

  • WHO (2020) World Health Organisation. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200211-sitrep-22-ncov.pdf?sfvrsn=fb6d49b1_2

  • Ziyadi M, Dahbi A, Aitlhaj A, El Ouahrani A, El Ouahidi A, Achtak H (2019) Terraced agroforestry systems in West Anti-Atlas (Morocco): incidence of climate change and prospects for sustainable development. In: Castro P, Azul AM, Filho WL, Azeiteiro UM (eds) Climate change-resilient agriculture and agroforestry. Springer, Cham, Switzerland, pp 1–19

    Google Scholar 

Download references

Acknowledgements

Authors present their gratitude to Bio-Agrodiversity team members, and Pr. Younès Hmimsa and Pr. Salama Elfatehi for the valuable discussions and comments. In addition, authors thank all farmers and locals of the studied oases.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Houssni, M. et al. (2022). The Conservation Challenge of Traditional Agroecosystems in Morocco: The Case Study of Six Oases Agroecosystems. In: Leal Filho, W., Manolas, E. (eds) Climate Change in the Mediterranean and Middle Eastern Region. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-030-78566-6_10

Download citation