Skip to main content

Abscisic Acid and Plant Response Under Adverse Environmental Conditions

  • Chapter
  • First Online:
Plant Performance Under Environmental Stress

Abstract

The main constrain that reduces growth and development processes in plants is the stressful conditions, affecting crop yield. Under stress conditions, plants have developed mechanisms to cope with stresses, being insufficient depending on plant species. Phytohormones as abscisic acid (ABA) is a key-regulator mediating environmental stress-responses, being a potential candidate for improving stress tolerance in plants. ABA is an isoprenoid that regulates physiological, biochemical, and molecular processes like stomatal closure and protein storage, providing adaptation to many stresses such as drought, salt, and heavy metals. ABA is also an important messenger, acting as a signaling mediator, regulating adaptive responses of plants to different environmental stresses. The chapter attempts to underline the biosynthesis, signaling, and transport of ABA and its role in different physiological, biochemical, and molecular responses of plants under adverse environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A:

Photosynthetic rate

AAO3:

Abscisic-aldehyde oxidase

AAO3:

Aldehyde oxidase 3

ABA:

Abscisic acid

ABCG:

ATP-Binding Cassette subfamily G

ABI1:

ABA-insensitive1

ABI2:

ABA-insensitive2

AIT1:

(ABA)-importing transporter 1

ALMT1:

Aluminum-activated malate transporter 1

APX:

Ascorbate peroxidase

BAM1-3:

Barely any meristem 3

bZIP:

Basic leucine zipper

CLE:

Clavata3/embryo-surrounding region-related

CPKs:

Ca2+-dependent protein kinases

DREB/CBF:

Dehydration-responsive element binding/core binding factor

DTX:

Detoxification efflux carriers

E:

Transpiration rate

ERF:

Ethylene responsive factor

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

gs:

Stomatal conductance

HAB1:

Hypersensitive to ABA1

IRT1:

Iron-regulated transporter 1

LCYb:

Lycopene ß-cyclase

LEA:

Late embryogenesis abundant

MATE1:

Multidrug and toxin extrusion protein 1

MCSU:

Molybdenum cofactor sulfurase

MDA:

Malondialdehyde

MEP:

Methylerythritol phosphate

NCED3:

Nine-cis-epoxycarotenoid dioxygenase 3

NPF:

Nitrate peptide transporter

ORE1:

ORESARA1

P5CS:

Pyrroline-5-carboxylate synthetase

PP2Cs:

2C Protein phosphatases

PYR/PYL/RCAR:

Pyrabactin resistance/pyrabactin resistance-like/regulatory component of ABA receptors

RCAR:

Regulatory component of ABA receptor

ROS:

Reactive oxygen species

SAG12:

Senescence associated gene12

SDR/ABA2:

Short-chain alcohol dehydrogenase/reductase

SnRK2s:

Sucrose nonfermenting 1-related protein kinase type 2

SOD:

Superoxide dismutase

UFGT:

UDP-glucose:flavonoid 3-Oglucosyl transferase

WOX5:

Wuschel related homeobox5

XDH:

Xanthine dehydrogenase

ZEP:

Zeaxanthin epoxidase

References

  • Abogadallah GM (2010) Antioxidative defense under salt stress. Plant Signal Behav 5(4):369–374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akhiyarova GR, Finkina EI, Ovchinnikova TV, Veselov DS, Kudoyarova GR (2019) Role of Pea LTPs and abscisic acid in salt-stressed roots. Biomolecules 10(1):15

    Article  PubMed Central  CAS  Google Scholar 

  • Amzallag GN, Lerner HR, Poljakoff-Mayber A (1990) Exogenous ABA as a modulator of the response of Sorghum to high salinity. J Exp Bot 41(12):1529–1534

    Article  CAS  Google Scholar 

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59(8):2029–2041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai L, Zhang GZ, Zhou Y, Zhang ZP, Wang W, Du YY, Wu ZY, Song CP (2009) Plasma membrane-associated proline-rich extensin-like receptor kinase 4, a novel regulator of Ca2+ signaling, is required fos abscisic acid response in Arabidopsis thaliana. Plant J 60:314–327

    Article  PubMed  Google Scholar 

  • Barberon M, Vermeer JEM, De Bellis D, Wang P, Naseer S, Andersen TG, Humbel BM, Nawrath C, Takano J, Salt DE, Geldner N (2016) Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell 164(3):447–459

    Article  PubMed  CAS  Google Scholar 

  • Barbieri G, Vallone S, Orsini F, Paradiso R, De Pascale S, Negre-Zakharov F, Maggio A (2012) Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (Ocimum basilicum L.). J Plant Physiol 169(17):1737–1746

    Article  PubMed  CAS  Google Scholar 

  • Barrero JM, Rodríguez PL, Quesada V, Piqueras P, Ponce MR, Micol JL (2006) Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant Cell Environ 29(10):2000–2008

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Ramegowda V, Kumar A, Pereira A (2016) Plant adaptation to drought stress. F1000Res 5:1554

    Article  CAS  Google Scholar 

  • Boursiac Y, Léran S, Corratgé-Faillie C, Gojon A, Krouk G, Lacombe B (2013) ABA transport and transporters. Trends Plant Sci 18:325–333

    Article  PubMed  CAS  Google Scholar 

  • Bücker-Neto L, Paiva ALS, Machado RD, Arenhart RA, Margis-Pinheiro M (2017) Interactions between plant hormones and heavy metals responses. Genet Mol Biol 40:373–386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campbell L, Etchells JP, Cooper M, Kumar M, Turner SR (2018) An essencial role for abscisic acid in the regulation of xylem differentiation. Development 145:161992

    Article  CAS  Google Scholar 

  • Cao X, Wu L, Wu M, Zhu C, Jin Q, Zhang J (2020) Abscisic acid mediated proline biosynthesis and antioxidant ability in roots of two different rice genotypes under hypoxic stress. BMC Plant Biol 20(1):198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carrió-Seguí À, Romero P, Sanz A, Peñarrubia L (2016) Interaction between ABA signaling and copper homeostasis in Arabidopsis thaliana. Plant Cell Physiol 57(7):1568–1582

    PubMed  Google Scholar 

  • Chary NS, Kamala CT, Raj DS (2008) Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol Environ Saf 69(3):513–524

    Article  PubMed  CAS  Google Scholar 

  • Chaves M, Maroco J, Pereira J (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  PubMed  CAS  Google Scholar 

  • Checker VG, Kushwaha HR, Kumari P, Yadav S (2018) Role of phytohormones in plant defense: signaling and cross talk. In: Singh A, Singh I (eds) Molecular aspects of plant-pathogen interaction. Springer, Singapore

    Google Scholar 

  • Chen S, Polle A (2010) Salinity tolerance of Populus. Plant Biol 12(2):317–333

    Article  PubMed  CAS  Google Scholar 

  • Chen CT, Chen LM, Lin CC, Kao CH (2001) Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant Sci 160(2):283–290

    Article  PubMed  CAS  Google Scholar 

  • Chen CW, Yang YW, Lur HS, Tsai YG, Chang MC (2006) A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol 47(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Hawighorst P, Sun J, Polle A (2014) Salt tolerance in Populus: significance of stress signaling networks, mycorrhization, and soil amendments for cellular and whole-plant nutrition. Environ Exp Bot 107:113–124

    Article  CAS  Google Scholar 

  • Chen F, Shen J, Min D, Ke L, Tian X, Korpelainen H, Li C (2018) Male Populus cathayana than female shows higher photosynthesis and less cellular injury through ABA-induced manganese transporting inhibition under high manganese condition. Trees 32(1):255–263

    Article  CAS  Google Scholar 

  • Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y (2020) Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol 62:25–54

    Article  PubMed  CAS  Google Scholar 

  • Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chowdhury S, Mazumder MA, Al-Attas O, Husain T (2016) Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci Total Environ 569–570:476–488

    Article  PubMed  CAS  Google Scholar 

  • Christmann A, Grill E, Huang J (2013) Hydraulic signals in long-distance signaling. Curr Opin Plant Biol 16:293–300

    Article  PubMed  CAS  Google Scholar 

  • Chun SC, Paramasivan M, Chandrasekaran M (2018) Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front Microbiol 9:2525

    Article  PubMed  PubMed Central  Google Scholar 

  • Comas LH, Becker SR, Cruz VMV, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442

    Article  PubMed  PubMed Central  Google Scholar 

  • Crizel RL, Perin EC, Siebeneichler TJ, Borowski JM, Messias RS, Rombaldi CV, Galli V (2020) Abscisic acid and stress induced by salt: effect on the phenylpropanoid, L-ascorbic acid and abscisic acid metabolism of strawberry fruits. Plant Physiol Biochem 152:211–220

    Article  PubMed  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  PubMed  CAS  Google Scholar 

  • Dar NA, Amina I, Wani W, Wani SA, Shikari AB, Wani SH, Masoodi KZ (2017) Abscisic acid: a key regulator of abiotic stress tolerance in plants. Plant Gene 11:106–111

    Article  CAS  Google Scholar 

  • De Zio E, Trupiano D, Karady M, Antoniadi I, Montagnoli A, Terzaghi M, Chiatante D, Ljung K, Scippa GS (2019) Tissue-specific hormone profiles from woody poplar roots under bending stress. Physiol Plant 165(1):101–113

    Article  PubMed  CAS  Google Scholar 

  • Dejonghe W, Okamoto M, Cutler S (2018) Small molecule probes of ABA biosynthesis and signaling. Plant Cell Physiol 59(8):1490–1499

    Article  PubMed  CAS  Google Scholar 

  • Dey S, Mazumder P, Paul S (2014) Effect of copper on growth and chlorophyll content in tea plants (Camellia sinensis (L.) O. Kuntze). Int J Res Appl Nat Soc Sci 2(5):223–230

    Google Scholar 

  • DeYoung BJ, Bickle KL, Schrage KJ, Muskett P, Patel K, Clark SE (2006) The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J 45(1):1–16

    Article  PubMed  CAS  Google Scholar 

  • Diretto G, Frusciante S, Fabbri C, Schauer N, Busta L, Wang Z, Matas A, Fiore A, Rose J, Fernie AR, Jetter R, Mattei B, Giovannoni J, Giuliano G (2020) Manipulation of ß-carotene levels in tomato fruits results in increased ABA content and extended shelf life. Plant Biotechnol J 18(5):1185–1199

    Article  PubMed  CAS  Google Scholar 

  • Du YL, Wang ZY, Fan JW, Turner NC, He J, Wang T, Li FM (2013) Exogenous abscisic acid reduces water loss and improves antioxidant defense, desiccation tolerance and transpiration efficiency in two spring wheat cultivars subjected to a soil water deficit. Funct Plant Biol 40:494–506

    Article  PubMed  CAS  Google Scholar 

  • Duan L, Dietrich D, Ng CH, Chan PMY, Bhalerao R, Bennett MJ, Dinneny JR (2013) Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25(1):324–341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eichert T, Burkhardt J (2001) Quantification of stomatal uptake of ionic solutes using a new model system. J Exp Bot 52:771–781

    Article  PubMed  CAS  Google Scholar 

  • Eichert T, Kurtz A, Goldbach HE (2006) Investigations on the contribution of the stomatal pathway to foliar uptake. Acta Hortic 721:307–312

    Article  CAS  Google Scholar 

  • Etehadnia M, Waterer DR, Tanino KK (2008) The method of ABA application affects salt stress responses in resistant and sensitive potato lines. J Plant Growth Regul 27(4):331–341

    Article  CAS  Google Scholar 

  • Fan SK, Fang XZ, Guan MY, Ye YQ, Lin XY, Du ST, Jin C (2014) Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake. Front Plant Sci 5:721–721

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan W, Xu JM, Wu P, Yang ZX, Lou HQ, Chen WW, Jin JF, Zheng SJ, Yang JL (2019) Alleviation by abscisic acid of Al toxicity in rice bean is not associated with citrate efflux but depends on ABI5-mediated signal transduction pathways. J Integr Plant Biol 61:140–154

    Article  PubMed  CAS  Google Scholar 

  • Fediuc E, Lips SH, Erdei L (2005) O-acetylserine (thiol) lyase activity in Phragmites and Typha plants under cadmium and NaCl stress conditions and the involvement of ABA in the stress response. J Plant Physiol 162(8):865–872

    Article  PubMed  CAS  Google Scholar 

  • Ferrara G, Mazzeo A, Stella A, Pacucci C, Pacifico A, Gambacorta G, Faccia M, Trani A, Gallo V, Cafagna I, Mastrorilli P (2013) Application of abscisic acid (S-ABA) to crimson seedless grape berries in a Mediterranean climate: effect on color, chemical, characteristics, metabolic profile, and s-aba concentration. J Plant Growth Regul 32:491–505

    Article  CAS  Google Scholar 

  • Finkelstein R (2013) Abscisic Acid synthesis and response. Arabidopsis Book 11:e0166

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Rodriguez PL, Zhu JK (2009) In vitro reconstitution of an abscisic acid signaling pathway. Nature 462:660–664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gai Z, Wang Y, Ding Y, Qian W, Qiu C, Xie H, Sun L, Jiang Z, Ma Q, Wang L, Ding Z (2020) Exogenous abscisic acid induces the lipid and flavonoid metabolism of tea plants under drought stress. Sci Rep 10:12275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geng Y, Wu R, Wee CW, Xie F, Wei X, Chan PMY, Tham C, Duan L, Dinney JR (2013) A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. Plant Cell 25(6):2132–2154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • González-Guzmán M, Apostolova N, Bellés JM, Barrero JM, Piqueras P, Ponce MR, Micol JL, Serrano R, Rodríguez PL (2002) The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14:1833–1846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • González-Villagra J, Rodrigues-Salvador A, Nunes-Nesi A, Cohen JD, Reyes-Díaz MM (2018) Age-related mechanism and its relationship with secondary metabolism and abscisic acid in Aristotelia chilensis plants subjected to drought stress. Plant Physiol Biochem 124:136–145

    Article  PubMed  CAS  Google Scholar 

  • González-Villagra J, Cohen JD, Reyes-Díaz MM (2019) Abscisic acid is involved in phenolic compounds biosynthesis, mainly anthocyanins, in leaves of Aristotelia chilensis plants (Mol.) subjected to drought stress. Physiol Plant 165(4):855–866

    Article  PubMed  CAS  Google Scholar 

  • Hajihashemi S (2020) Stomatal regulation as a drought-tolerance mechanism. In: Roychoudhury A, Tripathi D (eds) Molecular plant abiotic stress. https://doi.org/10.1002/9781119463665.ch3

    Chapter  Google Scholar 

  • Hamisch D, Kaufholdt D, Kuchernig JC, Bittner F, Mendel R, Haensch R, Popko J (2016) Transgenic Poplar plants for the investigation of ABA-dependent salt and drought stress adaptation in trees. Am J Plant Sci 7:1337–1356

    Article  CAS  Google Scholar 

  • Hashiguchi A, Komatsu S (2016) Impact of post-translational modifications of crop proteins under abiotic stress. Proteome 4:42

    Article  CAS  Google Scholar 

  • Hauser F, Waadt R, Schroeder JI (2011) Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol 21(9):346–R355

    Article  CAS  Google Scholar 

  • Hayes S (2018) Revealing the invisible: a synthetic reporter for ABA. Plant Physiol 177(4):1346–1347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He J, Jin Y, Palta JA, Liu HY, Chen Z, Li FM (2019) Exogenous ABA induces osmotic adjustment, improves leaf water relations and water use efficiency, but not yield in soybean under water stress. Agronomy 9:395

    Article  CAS  Google Scholar 

  • Hemberg T (1949) Significant of growth-inhibition substances and auxins for the rest-period of the potato’s tuber. Physiol Plant 2:24–36

    Article  CAS  Google Scholar 

  • Holbrook NM, Shashidhar VR, James RA, Munns R (2002) Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. J Exp Bot 53(373):1503–1514

    PubMed  CAS  Google Scholar 

  • Holdsworth HJ, Bentsink J, Soppe WJJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy, and germination. New Phytol 179:33–54

    Article  PubMed  CAS  Google Scholar 

  • Hou N, You J, Pang J, Xu M, Chen G, Yang Z (2010) The accumulation and transport of abscisic acid in soybean under aluminum stress. Plant Soil 330:127–137

    Article  CAS  Google Scholar 

  • Hsu YT, Kao CH (2003) Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ 26(6):867–874

    Article  PubMed  CAS  Google Scholar 

  • Hsu YT, Kao CH (2008) Distinct roles of abscisic acid in rice seedlings during cadmium stress at high temperature. Bot Stud 49(4):335–342

    CAS  Google Scholar 

  • Hu B, Deng F, Chen G, Chen X, Gao W, Long L, Xia J, Chen Z (2020) Evolution of abscisic acid signaling for stress responses to toxic metals and metalloids. Front Plant Sci 11:909

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Guo Y, Liu Y, Zhang F, Wang Z, Wang H, Wang F, Li D, Mao D, Luan S, Liang M, Chen L (2018) 9-cis-epoxycarotenoid dioxygenase 3 regulates plant growth and enhances multi-abiotic stress tolerance in rice. Front Plant Sci 9:162–162

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Saleem MF, Ashraf MY, Cheema MA, Haq MA (2010) Abscisic acid, a stress hormone helps in improving water relations and yield of sunflower (Helianthus annuus L.) hybrids under drought. Pak J Bot 42:2177–2189

    CAS  Google Scholar 

  • Isayenkov SV, Maathuis FJM (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Izquerdo-Bueno I, Gonzalez-Rodriguez VE, Simon A, Dalmais B, Pradier JM, Le Pacheur P, Mercier A, Walker AS (2018) Biosynthesis of abscisic acid in fungi: identification of sesquiterpene cyclase as the kay enzyme in Botrytis cinerea. Environ Microbiol 20:2469–2482

    Article  CAS  Google Scholar 

  • Jamil M, Bae L, Yong J, Ashraf M, Chun L, Rha E (2005) Effect of salt (NaCl) stress on germination and early seedling growth of four vegetables species. J Cent Eur Agric 7:2

    Google Scholar 

  • Jan S, Abbas N, Ashraf M, Ahmad P (2019) Roles of potential plant hormones and transcriptation factors in controlling leaf senescence and drought tolerance. Protoplasma 256:313–3297

    Article  PubMed  CAS  Google Scholar 

  • Jansen MAK, Hectors K, O’Brien NM, Guisez Y, Potters G (2008) Plant stress and human health: do human consumers benefit from UV-B acclimated crops? Plant Sci 175:449–458

    Article  CAS  Google Scholar 

  • Jia WS, Davies WJ (2007) Modification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced abscisic acid signals. Plant Physiol 143:68–77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone ABA. Plant Biol 107:2355–2360

    CAS  Google Scholar 

  • Kang J, Yim S, Choi H, Kim A, Lee KP, López-Molina L, Martinoia E, Lee Y (2015a) Abscisic acid transporters cooperate to control seed germination. Nat Commun 6:8113

    Article  PubMed  Google Scholar 

  • Kang G, Li G, Wang L, Wei L, Yang Y, Wang P, Yang Y, Wang Y, Feng W, Wang C, Guo T (2015b) Hg-responsive proteins identified in wheat seedlings using ITRAQ analysis and the role of ABA in Hg stress. J Proteome Res 14(1):249–267

    Article  PubMed  CAS  Google Scholar 

  • Karppinen K, Hirvela E, Nevala T, Sipari N, Soukas M, Jaakola L (2013) Changes in the abscisic acid levels and related gene expression during fruit development and ripening in bilberry (Vaccinium myrtillus L.). Phytochemistry 95:127–134

    Article  PubMed  CAS  Google Scholar 

  • Kaur G, Asthir A (2020) Impact of exogenously applied ABA on proline metabolism conferring drought and salinity stress tolerance in wheat genotypes. Cereal Res Commun 48:309–315

    Article  CAS  Google Scholar 

  • Kebert M, Rapparini F, Neri L, Bertazza G, Orlović S, Biondi S (2017) Copper-induced responses in Poplar clones are associated with genotype-and organ-specific changes in peroxidase activity and proline, polyamine, ABA, and IAA levels. J Plant Growth Regul 36(1):131–147

    Article  CAS  Google Scholar 

  • Khadri M, Tejera NA, Lluch C (2006) Alleviation of salt stress in common bean (Phaseolus vulgaris) by exogenous abscisic acid supply. J Plant Growth Regul 25(2):110–119

    Article  CAS  Google Scholar 

  • Kim T-H, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137:19–32

    Article  CAS  Google Scholar 

  • Kobayashi Y, Kobayashi Y, Sugimoto M, Lakshmanan V, Iuchi S, Kobayashi M, Bais HP, Koyama H (2013) Characterization of the complex regulation of AtALMT1 expression in response to phytohormones and other inducers. Plant Physiol 162(2):732–740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kubier A, Wilkin RT, Pichler T (2019) Cadmium in soils and groundwater: a review. J Appl Geochem 108:104388

    Article  CAS  Google Scholar 

  • Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, Moriyama Y, Shinozaki K (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci 107:2361–2366

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuromori T, Mizoi J, Umezawa T, Yamaguchi-Shinozaki K, Shinozaki K (2014) Stress signaling networks: drought stress. In: Assmann S, Liu B (eds) The plant sciences, vol 2. Springer, pp 383–409

    Google Scholar 

  • Kuromori T, Seo M, Shinozaki K (2018) ABA transport and plant water stress responses. Trends Plant Sci 23:513–522

    Article  PubMed  CAS  Google Scholar 

  • Lei Y, Korpelainen H, Li C (2007) Physiological and biochemical responses to high Mn concentrations in two contrasting Populus cathayana populations. Chemosphere 68(4):686–694

    Article  PubMed  CAS  Google Scholar 

  • Lei GJ, Zhu XF, Wang ZW, Dong F, Dong NY, Zheng SJ (2014) Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis: abscisic acid alleviates iron deficiency. Plant Cell Environ 37(4):852–863

    Article  PubMed  CAS  Google Scholar 

  • Leskovar DI, Cantliffe DJ (1992) Pepper seedling growth response to drought stress and exogenous abscisic acid. J Am Soc Sci 117(3):389–393

    CAS  Google Scholar 

  • Li Z, Zhao X, Sandhu A, Gu L (2010) Effects of exogenous abscisic acid on yield, antioxidant capacities, and phytochemical contents of greenhouse grown lettuces. J Agric Food Chem 58:6503–6509

    Article  PubMed  CAS  Google Scholar 

  • Li X, Chen L, Forde BG, Davies WJ (2017) The biphasic root growth response to abscisic acid in Arabidopsis involves interaction with ethylene and auxin signaling pathways. Front Plant Sci 8:1493

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Wang J, Liu Q (2020) Photosynthesis product allocation and yield in sweet potato with spraying exogenous hormones under drought stress. J Plant Physiol 253:153265

    Article  CAS  Google Scholar 

  • Lim CW, Lee SC (2019) ABA-dependent and ABA-independent functions of RCAR5/PYL11 in response to cold stress. bioRxiv 723627

    Google Scholar 

  • Liu M, Xu J, Lou H, Fan W, Yang J, Zheng S (2016) Characterization of VuMATE1 expression in response to iron nutrition and aluminum stress reveals adaptation of rice bean (Vigna umbellata) to acid soils through cis regulation. Front Plant Sci 7:511

    PubMed  PubMed Central  Google Scholar 

  • Luchi S, Kobayashi M, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Article  Google Scholar 

  • Ma X, Li C, Wang M (2015) Wheat NF-YA10 functions independently in salinity and drought stress. Bioengineered 6:245–247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma Y, Wang P, Wang M, Sun M, Gu Z, Yang R (2019) GABA mediates phenolic compounds accumulation and the antioxidant system enhancement in germinated hulless barley under NaCl stress. Food Chem 1:593–601

    Article  CAS  Google Scholar 

  • Mähönen AP, Ten Tusscher K, Siligato R, Smetana O, Díaz-Triviño S, Salojarviä J, Waschman G, Prasad K, Heidstra R, Scheres B (2014) PLETHORA gradient formation mechanisms separate auxin response. Nature 515:125–129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Majerus V, Bertin P, Lutts S (2009) Abscisic acid and oxidative stress implications in overall ferritin synthesis by African rice (Oryza glaberrima Steud.) seedlings exposed to short term iron toxicity. Plant Soil 324(1–2):253–265

    Article  CAS  Google Scholar 

  • Maluf MP, Saab IN, Wurtzel ET, Sachs MM (1997) The viviparous12 maize mutant is deficient in abscisic acid, carotenoids, and chlorophyll synthesis. J Exp Bot 48(311):1259–1268

    Article  CAS  Google Scholar 

  • Milla MAR, Maurer A, Huete AR, Gustafson JP (2003) Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J 36(5):602–615

    Article  CAS  Google Scholar 

  • Morales F, Ancín M, Fakhet D, González-Torralba J, Gámez AL, Seminario A, Soba D, Mariem SB, Garriga M, Aranjuelo I (2020) Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants (Basel) 9:88

    Article  CAS  Google Scholar 

  • Mundy J, Chua NH (1988) Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J 7(8):22792286

    Article  Google Scholar 

  • Munzuro Ö, Zengin FK, Yahyagil Z (2008) The abscisic acid levels of wheat (Triticum aestivum L. cv Cakmak 79) seeds that were germinated under heavy metal (Hg++, Cd++, Cu++) stress. GU J Sci 21(1):1–7

    Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  PubMed  CAS  Google Scholar 

  • Ng LM, Melcher K, Teh BT, Xu HE (2014) Abscisic acid perception and signaling: structural mechanisms and applications. Acta Pharmacol Sin 35:567–584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niu M, Xie J, Chen C, Cao H, Sun J, Kong Q, Shabala S, Shabala L, Huang Y, Bie Z (2018) An early ABA-induced stomatal closure, Na+ sequestration in leaf vein and K+ retention in mesophyll confer salt tissue tolerance in Cucurbita species. J Exp Bot 69(20):4945–4960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niu M, Sun S, Nawaz MA, Sun J, Cao H, Lu J, Huang Y, Bie Z (2019) Grafting cucumber onto pumpkin induced early stomatal closure by increasing ABA sensitivity under salinity conditions. Front Plant Sci 10:1290

    Article  PubMed  PubMed Central  Google Scholar 

  • North HM, De Almeida A, Boutin JP, Frey A, To A, Botran L, Sotta B, Marion-Poll A (2007) The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. Plant J 50(5):810–824

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma K, Lyon JL, Addicott FT, Smith OE (1963) Abscisin II, an abscission-accelerating substance from young cotton fruit. Science 142:1592–1593

    Article  PubMed  CAS  Google Scholar 

  • Pan W, You Y, Shentu J-L, Weng Y-N, Wang S-T, Xu Q-R, Liu H-J, Du S-T (2020) Abscisic acid (ABA)-importing transporter 1 (AIT1) contributes to the inhibition of Cd accumulation via exogenous ABA application in Arabidopsis. J Hazard Mater 391:122189

    Article  PubMed  CAS  Google Scholar 

  • Panda SK, Baluska F, Matsumoto H (2009) Aluminum stress signaling in plants. Plant Signal Behav 4(7):592–597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey DM, Goswami CL, Kumar B (2003) Physiological effects of plant hormones in cotton under drought. Biol Plant 47:535–540

    Article  CAS  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chw TF, Alfred SE, Bonetta D, Finkelstein R, Provart N, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits PP2Cs via the PYR/PYL family of ABA-binding START proteins. Science 324(5930):1068–1071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    Article  PubMed  CAS  Google Scholar 

  • Petricka JJ, Winter CM, Benfey PN (2012) Control of Arabidopsis root development. Annu Rev Plant Biol 63:563–590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pompeu GB, Vilhena MB, Gratão PL, Carvalho RF, Rossi ML, Martinelli AP, Azevedo R (2017) Abscisic acid-deficient sit tomato mutant responses to cadmium-induced stress. Protoplasma 254(2):771–783

    Article  PubMed  CAS  Google Scholar 

  • Popova LP, Stoinova ZG, Maslenkova LT (1995) Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L. during salinity stress. J Plant Growth Regul 14(4):211–218

    Article  CAS  Google Scholar 

  • Rahnama A, James RA, Poustin K, Munns R (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37(3):255–263

    Article  Google Scholar 

  • Rajasheker G, Jawahar G, Jalaja N, Kumar SA, Kumari PH, Punita DL, Kishor PBK (2019) Role and regulation of osmolytes and ABA interaction in salt and drought stress tolerance. In: Plant signaling molecules. Woodhead Publishing, pp 417–436

    Chapter  Google Scholar 

  • Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32(3):237–249

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Díaz M, Ulloa-Inostroza EM, González-Villagra J, Ivanov AG, Kurepin LV (2016) Phytohormonal responses to soil acidity in plants. In: Ahammed GJ, Yu J-Q (eds) Plant hormones under challenging environmental factors, pp 133–155

    Google Scholar 

  • Reyna-Llorens I, Corrales I, Poschenrieder C, Barcelo J, Cruz-Ortega R (2015) Both aluminum and ABA induce the expression of an ABC-like transporter gene (FeALS3) in the Al-tolerant species Fagopyrum esculentum. Environ Exp Bot 111:74–82

    Article  CAS  Google Scholar 

  • Rowe JH, Topping JF, Liu J, Lindsey K (2016) Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytol 211:225–239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruiz-Lozano JM, Alguacil M, Bárzana G, Vernieri P, Aroca R (2009) Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non-mycorrhizal maize plants through regulation of PIP aquaporins. Plant Mol Biol 70:565–579

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Sola MÁ, Rodríguez-Concepción M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10:e0158

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Sola MÁ, Arbona V, Gómez-Cadenas A, Rodríguez-Concepción M, Rodríguez-Villalón A (2014) A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in Arabidopsis. PLoS One 9(3):e90765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandhu AK, Gray DJ, Lu J, Gu L (2011) Effects of exogenous abscisic acid on antioxidant capacities, anthocyanins, and flavonol contents of muscadine grape (Vitis rotundifolia) skins. Food Chem 126:982–988

    Article  CAS  Google Scholar 

  • Schurr U, Gollan T, Schulze ED (1992) Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. II. Stomatal sensitivity to abscisic acid imported from the xylem sap. Plant Cell Environ 15:561–567

    Article  CAS  Google Scholar 

  • Schwartz SH, Zeevaart JAD (2010) Abscisic acid biosynthesis and metabolism. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction and action, 3rd (revised) edn. Springer, Dordrecht, p 137155

    Google Scholar 

  • Seiler C, Harshavardhan VT, Reddy PS, Hensel G, Kumlehn J, Eschen-Lippold L (2014) Abscisic acid flux alterations result in differential abscisic acid signaling responses and impact assimilation efficiency in barley under terminal drought stress. Plant Physiol 164(4):1677–1696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Serrano R, Mulet J, Rios G, Marquez J (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot 50:1023–1036

    Article  CAS  Google Scholar 

  • Shen G, Niu J, Deng Z (2017) Abscisic acid treatment alleviates cadmium toxicity in purple flowering stalk (Brassica campestris L. ssp. Chinensis var. Purpurea Hort.) seedlings. Plant Physiol Biochem 118:471–478

    Article  PubMed  CAS  Google Scholar 

  • Shi WG, Li H, Liu TX, Polle A, Peng CH, Luo ZB (2015) Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus × canescens exposed to excess zinc: ABA alleviates excess Zn accumulation in poplars. Plant Cell Environ 38(1):207–223

    Article  PubMed  CAS  Google Scholar 

  • Shukla A, Srivastava S, Suprasanna P (2017) Genomics of metal stress-mediated signalling and plant adaptive responses in reference to phytohormones. Curr Genomics 18(6):512–522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song C, Yan Y, Rosado A, Zhang Z, Castellarin SD (2019) ABA alleviates uptake and accumulation of zinc in grapevine (Vitis vinifera L.) by inducing expression of ZIP and detoxification-related genes. Front Plant Sci 10:872

    Article  PubMed  PubMed Central  Google Scholar 

  • Sreenivasulu N, Harshavardhan VT, Govind G, Seiler C, Kohli A (2012) Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 506:265–273

    Article  PubMed  CAS  Google Scholar 

  • Sripinyowanich S, Klomsakula P, Boonburapong B, Bangyeekhuna T, Asamic T, Gud H, Buaboochaa T, Chadchawana S (2013) Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): the role of OsP5CS1 and OsP5CR gene expression during salt stress. Environ Exp Bot 86:94–105

    Article  CAS  Google Scholar 

  • Sterckeman T, Thomine S (2020) Mechanisms of cadmium accumulation in plants. Crit Rev Plant Sci 39(4):322–359

    Article  Google Scholar 

  • Strizhov N, Ábraham E, Ökrész L, Blicking S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12:557–569

    PubMed  CAS  Google Scholar 

  • Stroiński A, Giżewska K, Zielezińska M (2013) Abscisic acid is required in transduction of cadmium signal to potato roots. Biol Plant 57(1):121–127

    Article  CAS  Google Scholar 

  • Sun LR, Wang YB, He SB, Hao FS (2018) Mechanisms for abscisic acid inhibition of primary root growth. Plant Signal Behav 13:e1500069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sussmil F, Brodribb T, McAdam S (2017) Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required. J Exp Bot 68(19):2913–1918

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Chapter 23: Abscisic acid: a seed maturation and stress signal. In: Plant physiology, 4th edn. Sinauer Associates

    Google Scholar 

  • Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K (2018) A small peptide modulates stomatal control via abscisic acid in long-distance signaling. Nature 556:235–238

    Article  PubMed  CAS  Google Scholar 

  • Takatsuka H, Umeda M (2014) Hormonal control of cell division and elongation along differentiation trajectories in roots meristem. J Exp Bot 65:2633–2643

    Article  PubMed  CAS  Google Scholar 

  • Takino J, Kosaki T, Sato Y, Liu C, Ozaki T, Minami A, Oikawa H (2018) Unveiling biosynthesis of the phytohormone abscisic acid in fungi: unprecedented mechanism of core scaffold formation catalyzed by an unusual sesquiterpene synthase. J Am Chem Soc 140:12392–12395

    Article  PubMed  CAS  Google Scholar 

  • Tardieu F, Parent B, Simonneau T (2010) Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes? Plant Cell Environ 33(4):636–647

    Article  PubMed  Google Scholar 

  • Teng K, Li J, Liu L, Han Y, Du Y, Zhang J, Sun H, Zhao Q (2014) Exogenous ABA induces drought tolerance in upland rice: the role of chloroplast and ABA biosynthesis-related gene expression on photosystem II during PEG stress. Acta Physiol Plant 36:2219–2227

    Article  CAS  Google Scholar 

  • Travaglia C, Reinoso H, Cohen A, Luna C, Tommasino E, Castillo C, Bottini R (2010) Exogenous ABA increases yield in field-grown wheat with moderate water restriction. J Plant Growth Regul 29:366–374

    Article  CAS  Google Scholar 

  • Trivedi DK, Gill SS, Tuteja N (2016) Abscisic Acid (ABA): biosynthesis, regulation, and role in abiotic stress tolerance. In: Tuteja N, Gill SS (eds) Abiotic stress response in plants. Wiley-VCH Verlag GmbH & Co., pp 311–322

    Google Scholar 

  • Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U, Ali E, Fahad S (2018) Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut Res 25:33103–33118

    Article  CAS  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51(11):1821–1839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annu Rev Plant Biol 71(1):403–433

    Article  PubMed  CAS  Google Scholar 

  • Verma DPS, Hu CA, Zhang M (1992) Root nodule development: origin, function and regulation of nodulin genes. Physiol Plant 85(2):253–265

    Article  CAS  Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra R, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2001) Biotechnology of plant osmotic stress toelrance and physiological and moleucalr considerations. Acta Hortic 560:285–292

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Ma F, Li M, Liang D, Zou J (2010) Physiological responses of kiwifruit plants to exogenous ABA under drought conditions. Plant Growth Regul 64:63–74

    Article  CAS  Google Scholar 

  • Wang J, Chen J, Pan K (2013) Effect of exogenous abscisic acid on the level of antioxidants in Atractylodes macrocephala Koidz under lead stress. Environ Sci Pollut Res Int 20(3):1441–1449

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Tohge T, Ivakov A, Mueller-Roeber B, Fernie AR, Mutwil M, Schippers JHM, Persson S (2015) Salt-related MYB1 coordinates abscisic acid biosynthesis and signaling during salt stress in Arabidopsis. Plant Physiol 169(2):1027–1041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wani SH, Kumar V (2015) Plant stress tolerance: engineering ABA: a potent phytohormone. Transcriptomics: An Open Access 3:1000113

    Article  Google Scholar 

  • Wheeler S, Loveys B, Ford C, Davies C (2009) The relationship between the expression of abscisic acid biosynthesis genes, accumulation of abscisic acid and the promotion of Vitis vinifera L. berry ripening by abscisic acid. Aust J Grape Wine Res 15:195–204

    Article  CAS  Google Scholar 

  • Wu R, Duan L, Pruneda-Paz JL, Oh D, Pound M, Kay S, Dinneny JR (2018) The 6xABRE synthetic promoter enables the spatiotemporal analysis of ABA-mediated transcriptional regulation. Plant Physiol 177(4):1650–1665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:402647

    Google Scholar 

  • Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133(1):29–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang L, Zhang J, He J, Qin Y, Hua D, Duan Y, Chen Z, Gong Z (2014) ABA-mediated ROS in mitochondria regulate root meristem activity by controlling PLETHORA expression in Arabidopsis. PLoS Genet 10:e1004791

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Yang X, Jang Z, Chen Z, Ruo X, Jin W, Wu Y, Shi X, Xu M (2018) UV resistance Locus 8 from Chrysanthemum morifolium ramat (CmUVR8) plays important roles in UV-B signal transduction and UV-B-induced accumulation of flavonoids. Front Plant Sci 9:955

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye N, Li H, Zhu G, Liu Y, Liu R, Xu W, Jing Y, Peng X, Zhang J (2014) Copper suppresses abscisic acid catabolism and catalase activity and inhibits seed germination of Rice. Plant Cell Physiol 55(11):2008–2016

    Article  PubMed  CAS  Google Scholar 

  • Yin C, Duan B, Wang X, Li C (2004) Morphological and physiological responses of two contrasting Poplar species to drought stress and exogenous abscisic acid application. Plant Sci 167(5):1091–1097

    Article  CAS  Google Scholar 

  • Yoshida T, Fernie AR (2018) Remote control of transpiration via ABA. Trends Plant Sci 23:755–758

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Christmann A, Yamagushi-Shinozaki K, Grill E, Fernie AR (2019) Revisiting the basal role of ABA—roles outside of stress. Trends Plant Sci 24:625–635

    Article  PubMed  CAS  Google Scholar 

  • Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39:439–473

    Article  CAS  Google Scholar 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith D, Song C (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L, Gao M, Hu J, Zhang X, Wang K, Ashraf M (2012) Modulation Role of abscisic acid (ABA) on growth, water relations and glycinebetaine metabolism in two maize (Zea mays L.) cultivars under drought stress. Int J Mol Sci 13(3):3189–3202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Zhu H, Pan Y, Yu Y, Luan S, Li L (2014) A DTX/MATE-type transporter facilitates abscisic acid efflux and modulates ABA sensitivity and drought tolerance in Arabidopsis. Mol Plant 7:1522–1532

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Liu L, Chen B, Qin Z, Xiao Y, Zhang Y, Yao R, Liu H, Yang H (2019) Progress in understanding the physiological and molecular responses of Populus to salt stress. Int J Mol Sci 20(6):1312

    Article  PubMed Central  CAS  Google Scholar 

  • Zhao L, Xiong J, Li LP, Zhu C (2009) Low concentration of exogenous abscisic acid increases lead tolerance in rice seedlings. Biol Plant 53(4):728–732

    Article  CAS  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Chang Z, Gao J, Xiang L, Cao M, Yu C, Hu Y, You J, Shi H, Zhu Y, Gong Y, Mu Z, Wnag H, Deng X, Wang P, Bressan RA, Zhu JK (2016) ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci U S A 113:1949–1954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou H, Chen Y, Zhai F, Zhang J, Zhang F, Yuan X, Xie Y (2020) Hydrogen sulfide promotes rice drought tolerance via reestablishing redox homeostasis and activation of ABA biosynthesis and signaling. Plant Physiol Biochem 155:213–220

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjorie Reyes-Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonzalez-Villagra, J., Figueroa, C., Luengo-Escobar, A., Morales, M., Inostroza-Blancheteau, C., Reyes-Díaz, M. (2021). Abscisic Acid and Plant Response Under Adverse Environmental Conditions. In: Husen, A. (eds) Plant Performance Under Environmental Stress . Springer, Cham. https://doi.org/10.1007/978-3-030-78521-5_2

Download citation

Publish with us

Policies and ethics