Skip to main content

Realisability of Control-State Choreographies

  • Conference paper
  • First Online:
Model and Data Engineering (MEDI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12732))

Included in the following conference series:

Abstract

Choreographies prescribe the rendez-vous synchronisation of messages in a system of communicating finite state machines. Such a system is called realisable, if the traces of the prescribed communication coincide with those of the asynchronous system of peers, where the communication channels either use FIFO queues or multiset mailboxes. In this article we generalise choreographies to control-state choreographies, which enable parallelism. We redefine P2P systems on grounds of control-state machines and show that a control-state choreography is equivalent to the rendez-vous compositions of its peers and that language-synchronisability coincides with synchronisability. These results are used to characterise realisability of control-state choreographies, for which we prove two necessary conditions: a sequence condition and a choice condition. Then we also show that these two conditions together are sufficient for the realisability of control-state choreographies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that the FSM \(\mathcal {P}_p\) may be deterministic or non-deterministic.

  2. 2.

    In a more general context of concurrent systems in [4] peers are called agents. The special case, where messaging is added to shared locations is handled in [5].

  3. 3.

    Note that it would also be possible to use a separate mailbox for each channel defined by a pair (ij) with \(i,j \in P, i \ne j\). However, as it is always possible to access all elements in a multiset, this will not make any difference. For the case of FSM-based P2P systems this was formally shown in [12, Prop. 2].

References

  1. Basu, S., Bultan, T.: On deciding synchronizability for asynchronously communicating systems. Theor. Comput. Sci. 656, 60–75 (2016). https://doi.org/10.1016/j.tcs.2016.09.023

    Article  MathSciNet  MATH  Google Scholar 

  2. Benyagoub, S., Aït-Ameur, Y., Schewe, K.-D.: Event-B-supported choreography-defined communicating systems. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol. 12071, pp. 155–168. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48077-6_11

    Chapter  Google Scholar 

  3. Benyagoub, S., Ouederni, M., Aït-Ameur, Y., Mashkoor, A.: Incremental construction of realizable choreographies. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 1–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5_1

    Chapter  Google Scholar 

  4. Börger, E., Schewe, K.-D.: Concurrent abstract state machines. Acta Informatica 53(5), 469–492 (2015). https://doi.org/10.1007/s00236-015-0249-7

    Article  MathSciNet  MATH  Google Scholar 

  5. Börger, E., Schewe, K.D.: Communication in abstract state machines. J. UCS 23(2), 129–145 (2017). http://www.jucs.org/jucs_23_2/communication_in_abstract_state

  6. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System Design and Analysis. Springer, Berlin (2003). https://doi.org/10.1007/978-3-642-18216-7

    Book  MATH  Google Scholar 

  7. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342 (1983). https://doi.org/10.1145/322374.322380

    Article  MathSciNet  MATH  Google Scholar 

  8. Chambart, P., Schnoebelen, P.: Mixing lossy and perfect fifo channels. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 340–355. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9_28

    Chapter  Google Scholar 

  9. Clemente, L., Herbreteau, F., Sutre, G.: Decidable topologies for communicating automata with FIFO and bag channels. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 281–296. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6_20

    Chapter  Google Scholar 

  10. Finkel, A., Lozes, É.: Synchronizability of communicating finite state machines is not decidable. In: Chatzigiannakis, I., et al. (eds.) 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). LIPIcs, vol. 80, pp. 122:1–122:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.ICALP.2017.122

  11. Schewe, K.D., Wang, Q.: Partial updates in complex-value databases. In: Heimbürger, A., et al. (eds.) Information and Knowledge Bases XXII, Frontiers in Artificial Intelligence and Applications, vol. 225, pp. 37–56. IOS Press (2011). https://doi.org/10.3233/978-1-60750-690-4-37

  12. Schewe, K.-D., Aït-Ameur, Y., Benyagoub, S.: Realisability of choreographies. In: Herzig, A., Kontinen, J. (eds.) FoIKS 2020. LNCS, vol. 12012, pp. 263–280. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39951-1_16

    Chapter  MATH  Google Scholar 

  13. Schewe, K.D., Ameur, Y.A., Benyagoub, S.: Realisability of control-state choreographies. CoRR abs/2009.03623 (2020). https://arxiv.org/abs/2009.03623

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Dieter Schewe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schewe, KD., Aït-Ameur, Y., Benyagoub, S. (2021). Realisability of Control-State Choreographies. In: Attiogbé, C., Ben Yahia, S. (eds) Model and Data Engineering. MEDI 2021. Lecture Notes in Computer Science(), vol 12732. Springer, Cham. https://doi.org/10.1007/978-3-030-78428-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78428-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78427-0

  • Online ISBN: 978-3-030-78428-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics