Skip to main content

Analysis of Client-Side Security for Long-Term Time-Stamping Services

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12726))

Included in the following conference series:

  • 1095 Accesses

Abstract

Time-stamping services produce time-stamp tokens as evidences to prove that digital data existed at given points in time. Time-stamp tokens contain verifiable cryptographic bindings between data and time, which are produced using cryptographic algorithms. In the ANSI, ISO/IEC and IETF standards for time-stamping services, cryptographic algorithms are addressed in two aspects: (i) Client-side hash functions used to hash data into digests for nondisclosure. (ii) Server-side algorithms used to bind the time and digests of data. These algorithms are associated with limited lifespans due to their operational life cycles and increasing computational powers of attackers. After the algorithms are compromised, time-stamp tokens using the algorithms are no longer trusted. The ANSI and ISO/IEC standards provide renewal mechanisms for time-stamp tokens. However, the renewal mechanisms for client-side hash functions are specified ambiguously, that may lead to the failure of implementations. Besides, in existing papers, the security analyses of long-term time-stamping schemes only cover the server-side renewal, and the client-side renewal is missing. In this paper, we analyse the necessity of client-side renewal, and propose a comprehensive long-term time-stamping scheme that addresses both client-side renewal and server-side renewal mechanisms. After that, we formally analyse and evaluate the client-side security of our proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. American National Standard Institute (ANSI). ANSI X9.95-2016 - Trusted Timestamp Management and Security (2016)

    Google Scholar 

  2. Adams, C., Cain, P., Pinkas, D., Zuccherato, R.: RFC 3161: Internet X. 509 Public Key Infrastructure Time-Stamp Protocol (TSP) (2001)

    Google Scholar 

  3. ISO/IEC 18014–1:2008. Information technology - Security techniques - Time-stamping services - part 1: Framework. Standard (2008)

    Google Scholar 

  4. ISO/IEC 18014–2:2009. Information technology - Security techniques - Time-stamping services - part 2: Mechanisms producing independent tokens. Standard (2009)

    Google Scholar 

  5. ISO/IEC 18014–3:2009. Information technology - Security techniques - Time-stamping services - part 3: Mechanisms producing linked tokens. Standard (2009)

    Google Scholar 

  6. ISO/IEC 18014–4:2015. Information technology - Security techniques - Time-stamping services - part 4: Traceability of time sources. Standard (2015)

    Google Scholar 

  7. Lenstra, A.K.: Key length. Contribution to the handbook of information security (2004)

    Google Scholar 

  8. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  Google Scholar 

  9. Grover, A.K.: A fast quantum mechanical algorithm for database search. In: Proceedings, 28th Annual ACM Symposium on the Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  10. Geihs, M., Demirel, D., Buchmann, J.: A security analysis of techniques for long-term integrity protection. In: 2016 14th Annual Conference on Privacy, Security and Trust (PST), pp. 449–456. IEEE (2016)

    Google Scholar 

  11. Buldas, A., Geihs, M., Buchmann, J.: Long-term secure time-stamping using preimage-aware hash functions. In: Okamoto, T., Yu, Y., Au, M.H., Li, Y. (eds.) ProvSec 2017. LNCS, vol. 10592, pp. 251–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68637-0_15

    Chapter  Google Scholar 

  12. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 437–455. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_32

    Chapter  Google Scholar 

  13. Bayer, D., Haber, S., Stornetta, W.S.: Improving the efficiency and reliability of digital time-stamping. In: Capocelli, R., Vaccaro, U. (eds.) Sequences II, pp. 329–334. Springer, New York (1993). https://doi.org/10.1007/978-1-4613-9323-8_24

  14. National Institute of Standards and Technology (NIST). Recommendation for Digital Signature Timeliness. Standard (2009)

    Google Scholar 

  15. Pope, N., Santesson, S.: RFC 5816: Esscertidv2 update for RFC 3161 (2010)

    Google Scholar 

  16. Pinkas, D., Pope, N., Ross, J.: CMS Advanced Electronic Signatures (CAdES). IETF Request for Comments, 5126 (2008)

    Google Scholar 

  17. Centner, M.: XML Advanced Electronic Signatures (XAdES) (2003)

    Google Scholar 

  18. Haber, S., Kamat, P.: A content integrity service for long-term digital archives. In: Archiving Conference, volume 2006, pp. 159–164. Society for Imaging Science and Technology (2006)

    Google Scholar 

  19. Gondrom, T., Brandner, R., Pordesch, U.: Evidence Record Syntax (ERS). Request For Comments-RFC, 4998 (2007)

    Google Scholar 

  20. Blazic, A.J., Saljic, S., Gondrom, T. Extensible Markup Language Evidence Record Syntax (XMLERS). Technical Report, IETF RFC 6283 (2011). http://www.ietf.org/rfc/rfc6283.txt

  21. Lekkas, D., Gritzalis, D.: Cumulative notarization for long-term preservation of digital signatures. Comput. Secur. 23(5), 413–424 (2004)

    Article  Google Scholar 

  22. Vigil, M., Cabarcas, D., Buchmann, J., Huang, J.: Assessing trust in the long-term protection of documents. In: 2013 IEEE Symposium on Computers and Communications (ISCC), pp. 000185–000191. IEEE (2013)

    Google Scholar 

  23. Geihs, M.: Long-Term Protection of Integrity and Confidentiality-Security Foundations and System Constructions. Ph.D. thesis, Technische Universität (2018)

    Google Scholar 

  24. Canetti, R., Cheung, L., Kaynar, D.K., Lynch, N.A., Pereira, O.: Modeling computational security in long-lived systems, version 2. IACR Cryptology ePrint Archive, p. 492 (2008)

    Google Scholar 

  25. Schwenk, J.: Modelling time for authenticated key exchange protocols. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 277–294. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1_16

    Chapter  Google Scholar 

  26. Buldas, A., Laur, S.: Knowledge-binding commitments with applications in time-stamping. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 150–165. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_11

    Chapter  Google Scholar 

  27. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damgård for practical applications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_22

    Chapter  Google Scholar 

  28. Buldas, A., Saarepera, M.: On provably secure time-stamping schemes. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 500–514. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2_35

    Chapter  Google Scholar 

  29. Buldas, A., Laur, S.: Do broken hash functions affect the security of time-stamping schemes? In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 50–65. Springer, Heidelberg (2006). https://doi.org/10.1007/11767480_4

    Chapter  MATH  Google Scholar 

  30. Buldas, A., Jürgenson, A.: Does secure time-stamping imply collision-free hash functions? In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 138–150. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-5_9

    Chapter  Google Scholar 

  31. Buldas, A., Niitsoo, M.: Can we construct unbounded time-stamping schemes from collision-free hash functions? In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 254–267. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88733-1_18

    Chapter  Google Scholar 

  32. ISO/IEC 10118 (all parts). Information technology - Security techniques - Hash functions. Standard

    Google Scholar 

  33. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  34. Vanstone, S.A., Menezes, A.J., van Oorschot, P.C.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  35. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_21

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported by the European Union’s Horizon 2020 research and innovation program under grant agreement No. 779391 (FutureTPM) and grant agreement No. 952697 (ASSURED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meng, L., Chen, L. (2021). Analysis of Client-Side Security for Long-Term Time-Stamping Services. In: Sako, K., Tippenhauer, N.O. (eds) Applied Cryptography and Network Security. ACNS 2021. Lecture Notes in Computer Science(), vol 12726. Springer, Cham. https://doi.org/10.1007/978-3-030-78372-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78372-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78371-6

  • Online ISBN: 978-3-030-78372-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics