Skip to main content

Rapid Decay Property for Algebraic p-Adic Groups

  • Conference paper
  • First Online:
Geometric and Harmonic Analysis on Homogeneous Spaces and Applications (TJC 2019)

Abstract

For a locally compact group, the property of rapid decay (property (RD)) gives a control on the convolutor norm of any compactly supported function in terms of its \(L^2\)-norm and the diameter of its support. We investigate in this paper the algebraic structure of compactly generated p-adic groups that have property (RD). We prove in particular that an algebraic group over \(\mathbb Q_p\) which is compactly generated as well as its radical has property (RD) if and only if it is reductive.

Dedicated to the memory of Professor Takaaki Nomura.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Borel, J.-P. Serre, Théorèmes de finitude en cohomologie galoisienne. Comment. Math. Helv. 39, 111–164 (1964)

    Article  MathSciNet  Google Scholar 

  2. A. Borel, J. Tits, Groupes réductifs. Publ. Math. IHES 27, 55–150 (1965)

    Article  Google Scholar 

  3. I. Chatterji, C. Pittet, L. Saloff-Coste, Connected Lie groups and property (RD). Duke Math. J. 137, 511–536 (2007)

    Article  MathSciNet  Google Scholar 

  4. A. Connes, H. Moscovici, Cyclic cohomology, the Novikov conjecture and hyperbolic groups. Topology 29, 345–388 (1990)

    Article  MathSciNet  Google Scholar 

  5. P. de la Harpe, Groupes hyperboliques, algèbres d’opérateurs et un théorème de Jolissaint. C. R. Acad. Sci. Paris Sér. I Math. 307, 771–774 (1988)

    Google Scholar 

  6. Y. Guivarc’h, Croissance polynomiale et périodes des fonctions harmoniques. Bull. Soc. Math. France 101, 333–379 (1973)

    Article  MathSciNet  Google Scholar 

  7. U. Haagerup, An example of a nonnuclear \(C^*\)-algebra which has the metric approximation property. Invent. Math. 50, 279–293 (1979)

    Article  MathSciNet  Google Scholar 

  8. J.W. Jenkins, Growth of connected locally compact groups. J. Funct. Anal. 12, 113–127 (1973)

    Article  MathSciNet  Google Scholar 

  9. R. Ji, L.B. Schweitzer, Spectral invariance of smooth crossed products and rapid decay locally compact groups. K-Theory 10, 283–305 (1996)

    Article  MathSciNet  Google Scholar 

  10. P. Jolissaint, Rapidly decreasing functions in reduced \(C^*\)-algebras of groups. Trans. Amer. Math. Soc. 317, 167–196 (1990)

    MathSciNet  MATH  Google Scholar 

  11. V. Lafforgue, A proof of property (RD) for cocompact lattices of \(SL(3,{ R})\) and \(SL(3,{ C})\). J. Lie Theory 10, 255–267 (2000)

    MathSciNet  MATH  Google Scholar 

  12. V. Lafforgue, K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes. Invent. Math. 149, 1–95 (2002)

    Article  MathSciNet  Google Scholar 

  13. H. Leptin, On locally compact groups with invariant mean. Proc. Amer. Math. Soc. 19, 489–494 (1968)

    Google Scholar 

  14. S. Mustapha, La propriété (RD) pour les groupes algébriques p-adiques. C.R. Acad. Sci. Paris, Ser. I 348, 411–413 (2010)

    Google Scholar 

  15. J. Ramagge, G. Robertson, T. Steger, A Haagerup inequality for \(\tilde{A}_1\times \tilde{A}_1\) and \(\tilde{A}_2\) buildings. Geom. Funct. Anal. 8, 702–731 (1998)

    Article  MathSciNet  Google Scholar 

  16. D. Robinson, Elliptic Operators and Lie Groups (Oxford University Press, Oxford, 1991)

    MATH  Google Scholar 

  17. A. Valette, Introduction to the Baum-Connes Conjecture. Lectures Math. (ETH Zürich, Birkhäuser, 2002)

    Google Scholar 

  18. NTh. Varopoulos, Hardy-Littlewood theory on unimodular groups. Ann. Inst. Henri Poincaré Probab. Stat. 31, 669–688 (1995)

    MathSciNet  MATH  Google Scholar 

  19. N.Th. Varopoulos, L. Saloff-Coste, Th. Coulhon, Analysis and Geometry on Groups. Cambridge Tracts in Mathematics, vol. 102 (1993)

    Google Scholar 

Download references

Acknowledgements

The author would like to express his gratitude to A. Baklouti and H. Ishi, the organizers of the 6th Tunisian-Japanese Conference of “Geometric and Harmonic Analysis on homogeneous spaces and Applications” in honor of Professor Takaaki Nomura, for their warm hospitality during the stimulating conference held in Djerba Island. He would like to thank warmly Professor Baklouti for the interest he has shown in the rapid decay property and for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Mustapha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mustapha, S. (2021). Rapid Decay Property for Algebraic p-Adic Groups. In: Baklouti, A., Ishi, H. (eds) Geometric and Harmonic Analysis on Homogeneous Spaces and Applications . TJC 2019. Springer Proceedings in Mathematics & Statistics, vol 366. Springer, Cham. https://doi.org/10.1007/978-3-030-78346-4_11

Download citation

Publish with us

Policies and ethics