Skip to main content

What Makes a Good Antagonist: Lessons Learned from the Estrogen and Aryl Hydrocarbon Receptors

  • Chapter
  • First Online:
Nuclear Receptors
  • 833 Accesses

Abstract

Traditionally, ligands of receptors have been classified as agonists, partial agonists, or antagonists. Study of the estrogen receptor, however, introduced the field of pharmacology to the concept of selective modulators that varied in their ability to either activate or inhibit the receptor. The mechanisms underlying these events were mapped to their unique positions within the ligand-binding cavity of the estrogen receptor and their interactions with key amino acid residues residing within this pocket. Building on these lessons, selective aryl hydrocarbon receptor modulators are currently being developed to finely tune the activities of the aryl hydrocarbon receptor and inhibit disease-modifying processes. These ongoing lessons will challenge modern pharmacologists to develop new tools and approaches for predicting the ultimate pharmacological effects of these emerging therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this context, a “pure” AHR antagonist is capable of blocking all actions of the AHR with high efficacy, exhibits high AHR-binding affinity, and lacks measureable agonist activity.

Abbreviations

6-MCDF:

6-methoxy-1,3,8-triCDF

AF1/AF2:

Activation function 1/activation function 2

AHR:

Aryl hydrocarbon receptor

AHRE/DRE/XRE:

Aryl hydrocarbon receptor/dioxin/xenobiotic response element

AHRR:

Aryl hydrocarbon receptor repressor

bHLH/PAS:

Basic helix-loop-helix PER, ARNT, SIM

CYP1A1/1B1:

Cytochrome P450 1A1/1B1

DBD:

DNA-binding domain

DC50:

Half-maximal degradation concentration

E2:

17β-estradiol

ER:

Estrogen receptor

ERE:

Estrogen response element

FICZ:

6-formylindolo[3,2-b]carbazole

HSP90:

Heat shock protein of 90 kDa

IC50:

Half-maximal inhibition concentration

ITE:

2-(1′H-indolo-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester

KD:

Equilibrium dissociation constant

LDB:

Ligand-binding domain

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

PROTAC:

Proteolysis-targeting chimera

SAHRD:

Selective aryl hydrocarbon receptor downregulator

SAHRM:

Selective aryl hydrocarbon receptor modulator

SERCA:

Selective estrogen receptor covalent antagonist

SERDs:

Selective estrogen receptor downregulator

SERM:

Selective estrogen receptor modulator

STEAR:

Selective tissue estrogenic activity regulator

TCDD:

2,3,7,8 tetrachlorodibenzo-p-dioxin

XAP HBV:

X-associated protein 2

References

  1. Arao Y, Korach KS. The F domain of estrogen receptor alpha is involved in species-specific, tamoxifen-mediated transactivation. J Biol Chem. 2018;293:8495–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Avilla MN, Malecki KMC, Hahn ME, et al. The Ah receptor: adaptive metabolism, ligand diversity, and the xenokine model. Chem Res Toxicol. 2020;33:860–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beedanagari SR, Bebenek I, Bui P, et al. Resveratrol inhibits dioxin-induced expression of human CYP1A1 and CYP1B1 by inhibiting recruitment of the aryl hydrocarbon receptor complex and RNA polymerase II to the regulatory regions of the corresponding genes. Toxicol Sci. 2009;110:61–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bjeldanes LF, Kim JY, Grose KR, et al. Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc Natl Acad Sci U S A. 1991;88:9543–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blank JA, Tucker AN, Sweatlock J, et al. Alpha-Naphthoflavone antagonism of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced murine lymphocyte ethoxyresorufin-O-deethylase activity and immunosuppression. Mol Pharmacol. 1987;32:169–72.

    CAS  PubMed  Google Scholar 

  6. Boitano AE, Wang J, Romeo R, et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science. 2010;329:1345–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brzozowski AM, Pike AC, Dauter Z, et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature. 1997;389:753–8.

    Article  CAS  PubMed  Google Scholar 

  8. Burbach KM, Poland A, Bradfield CA. Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proc Natl Acad Sci U S A. 1992;89:8185–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Casper RF, Quesne M, Rogers IM, et al. Resveratrol has antagonist activity on the aryl hydrocarbon receptor: implications for prevention of dioxin toxicity. Mol Pharmacol. 1999;56:784–90.

    CAS  PubMed  Google Scholar 

  10. Choi EY, Lee H, Dingle RW, et al. Development of novel CH223191-based antagonists of the aryl hydrocarbon receptor. Mol Pharmacol. 2012;81:3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Choi EY, Lee H, Dingle RWC, et al. Implications and development of AHR-based therapeutic agents. Mol Cell Pharmacol. 2012;4:53–60.

    CAS  Google Scholar 

  12. Ciolino HP, Daschner PJ, Yeh GC. Resveratrol inhibits transcription of CYP1A1 in vitro by preventing activation of the aryl hydrocarbon receptor. Cancer Res. 1998;58:5707–12.

    CAS  PubMed  Google Scholar 

  13. Cuthill S, Poellinger L, Gustafsson JA. The receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in the mouse hepatoma cell line Hepa 1c1c7. A comparison with the glucocorticoid receptor and the mouse and rat hepatic dioxin receptors. J Biol Chem. 1987;262:3477–81.

    Article  CAS  PubMed  Google Scholar 

  14. Cyrus K, Wehenkel M, Choi EY, et al. Impact of linker length on the activity of PROTACs. Mol BioSyst. 2011;7:359–64.

    Article  CAS  PubMed  Google Scholar 

  15. Cyrus K, Wehenkel M, Choi EY, et al. Two-headed PROTAC: an effective new tool for targeted protein degradation. Chembiochem. 2010;11:1531–4.

    Article  CAS  PubMed  Google Scholar 

  16. Denison MS, Faber SC. And now for something completely different: diversity in ligand-dependent activation of Ah receptor responses. Curr Opin Toxicol. 2017;2:124–31.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fang ZZ, Krausz KW, Nagaoka K, et al. In vivo effects of the pure aryl hydrocarbon receptor antagonist GNF-351 after oral administration are limited to the gastrointestinal tract. Br J Pharmacol. 2014;171:1735–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fanning SW, Hodges-Gallagher L, Myles DC, et al. Specific stereochemistry of OP-1074 disrupts estrogen receptor alpha helix 12 and confers pure antiestrogenic activity. Nat Commun. 2018;9:2368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fernandez EJ. Allosteric pathways in nuclear receptors – potential targets for drug design. Pharmacol Ther. 2018;183:152–9.

    Article  CAS  PubMed  Google Scholar 

  20. Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol. 2019;116:135–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Furman C, Hao MH, Prajapati S, et al. Estrogen receptor covalent antagonists: the best is yet to come. Cancer Res. 2019;79:1740–5.

    Article  CAS  PubMed  Google Scholar 

  22. Gambacciani M, Levancini M. Hormone replacement therapy and the prevention of postmenopausal osteoporosis. Prz Menopauzalny. 2014;13:213–20.

    PubMed  PubMed Central  Google Scholar 

  23. Giani Tagliabue S, Faber SC, Motta S, et al. Modeling the binding of diverse ligands within the Ah receptor ligand binding domain. Sci Rep. 2019;9:10693.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Goya-Jorge E, Doan TQ, Scippo ML, et al. Elucidating the aryl hydrocarbon receptor antagonism from a chemical-structural perspective. SAR QSAR Environ Res. 2020;31:209–26.

    Article  CAS  PubMed  Google Scholar 

  25. Greb-Markiewicz B, Kolonko M. Subcellular localization signals of bHLH-PAS proteins: their significance, current state of knowledge and future perspectives. Int J Mol Sci. 2019;20:4746.

    Article  CAS  PubMed Central  Google Scholar 

  26. Guan J, Zhou W, Hafner M, et al. Therapeutic ligands antagonize estrogen receptor function by impairing its mobility. Cell. 2019;178:949–63 e918.

    Article  CAS  PubMed  Google Scholar 

  27. Henry EC, Kende AS, Rucci G, et al. Flavone antagonists bind competitively with 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) to the aryl hydrocarbon receptor but inhibit nuclear uptake and transformation. Mol Pharmacol. 1999;55:716–25.

    CAS  PubMed  Google Scholar 

  28. Hewitt SC, Korach KS. Estrogen receptors: new directions in the new millennium. Endocr Rev. 2018;39:664–75.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hu J, Hu B, Wang M, et al. Discovery of ERD-308 as a highly potent proteolysis targeting chimera (PROTAC) degrader of estrogen receptor (ER). J Med Chem. 2019;62:1420–42.

    Article  CAS  PubMed  Google Scholar 

  30. Jin UH, Park H, Li X, et al. Structure-dependent modulation of aryl hydrocarbon receptor-mediated activities by flavonoids. Toxicol Sci. 2018;164:205–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jordan VC. Tamoxifen: a most unlikely pioneering medicine. Nat Rev Drug Discov. 2003;2:205–13.

    Article  CAS  PubMed  Google Scholar 

  32. Kenakin T, Morgan P, Lutz M. On the importance of the “antagonist assumption” to how receptors express themselves. Biochem Pharmacol. 1995;50:17–26.

    Article  CAS  PubMed  Google Scholar 

  33. Kim SH, Henry EC, Kim DK, et al. Novel compound 2-methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazo-phenyl)-amide (CH-223191) prevents 2,3,7,8-TCDD-induced toxicity by antagonizing the aryl hydrocarbon receptor. Mol Pharmacol. 2006;69:1871–8.

    Article  CAS  PubMed  Google Scholar 

  34. Koehler KF, Helguero LA, Haldosen LA, et al. Reflections on the discovery and significance of estrogen receptor beta. Endocr Rev. 2005;26:465–78.

    Article  CAS  PubMed  Google Scholar 

  35. Kolonko M, Greb-Markiewicz B. bHLH-PAS proteins: their structure and intrinsic disorder. Int J Mol Sci. 2019;20:3653.

    Article  CAS  PubMed Central  Google Scholar 

  36. Lee H, Puppala D, Choi EY, et al. Targeted degradation of the aryl hydrocarbon receptor by the PROTAC approach: a useful chemical genetic tool. Chembiochem. 2007;8:2058–62.

    Article  CAS  PubMed  Google Scholar 

  37. Lee JE, Safe S. 3′,4′-dimethoxyflavone as an aryl hydrocarbon receptor antagonist in human breast cancer cells. Toxicol Sci. 2000;58:235–42.

    Article  CAS  PubMed  Google Scholar 

  38. Lee S, Barron MG. Structure-based understanding of binding affinity and mode of estrogen receptor alpha agonists and antagonists. PLoS One. 2017;12:e0169607.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Luster MI, Hong LH, Osborne R, et al. 1-amino-3,7,8-trichlorodibenzo-p-dioxin: a specific antagonist for TCDD-induced myelotoxicity. Biochem Biophys Res Commun. 1986;139:747–56.

    Article  CAS  PubMed  Google Scholar 

  40. Mackowiak B, Wang H. Mechanisms of xenobiotic receptor activation: direct vs. indirect. Biochim Biophys Acta. 2016;1859:1130–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maximov PY, Lee TM, Jordan VC. The discovery and development of selective estrogen receptor modulators (SERMs) for clinical practice. Curr Clin Pharmacol. 2013;8:135–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meijer FA, Leijten-Van De Gevel IA, De Vries R, et al. Allosteric small molecule modulators of nuclear receptors. Mol Cell Endocrinol. 2019;485:20–34.

    Article  CAS  PubMed  Google Scholar 

  43. Mohammadi-Bardbori A, Omidi M, Arabnezhad MR. Impact of CH223191-induced mitochondrial dysfunction on its aryl hydrocarbon receptor agonistic and antagonistic activities. Chem Res Toxicol. 2019;32:691–7.

    Article  CAS  PubMed  Google Scholar 

  44. Muku GE, Lahoti TS, Murray IA, et al. Ligand-mediated cytoplasmic retention of the Ah receptor inhibits macrophage-mediated acute inflammatory responses. Lab Investig. 2017;97:1471–87.

    Article  PubMed  CAS  Google Scholar 

  45. Mullard A. Arvinas’s PROTACs pass first safety and PK analysis. Nat Rev Drug Discov. 2019;18:895.

    PubMed  Google Scholar 

  46. Murray IA, Flaveny CA, Chiaro CR, et al. Suppression of cytokine-mediated complement factor gene expression through selective activation of the Ah receptor with 3′,4′-dimethoxy-alpha-naphthoflavone. Mol Pharmacol. 2011;79:508–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Murray IA, Flaveny CA, Dinatale BC, et al. Antagonism of aryl hydrocarbon receptor signaling by 6,2′,4′-trimethoxyflavone. J Pharmacol Exp Ther. 2010;332:135–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Murray IA, Krishnegowda G, Dinatale BC, et al. Development of a selective modulator of aryl hydrocarbon (Ah) receptor activity that exhibits anti-inflammatory properties. Chem Res Toxicol. 2010;23:955–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murray IA, Patterson AD, Perdew GH. Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat Rev Cancer. 2014;14:801–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Murray IaaP GH. Role of chaperone proteins in AHR function. In: Pohjanirta R, editor. The AH receptor in biology and toxicology. Hoboken: Wiley; 2012. p. 47–61.

    Google Scholar 

  51. Neavin DR, Liu D, Ray B, et al. The role of the aryl hydrocarbon receptor (AHR) in immune and inflammatory diseases. Int J Mol Sci. 2018;19:3851.

    Article  PubMed Central  CAS  Google Scholar 

  52. Nebert DW. Aryl hydrocarbon receptor (AHR): “pioneer member” of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of “sensors” of foreign and endogenous signals. Prog Lipid Res. 2017;67:38–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nilsson S, Koehler KF, Gustafsson JA. Development of subtype-selective oestrogen receptor-based therapeutics. Nat Rev Drug Discov. 2011;10:778–92.

    Article  CAS  PubMed  Google Scholar 

  54. Pappas B, Yang Y, Wang Y, et al. p23 protects the human aryl hydrocarbon receptor from degradation via a heat shock protein 90-independent mechanism. Biochem Pharmacol. 2018;152:34–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pastorkova B, Vrzalova A, Bachleda P, et al. Hydroxystilbenes and methoxystilbenes activate human aryl hydrocarbon receptor and induce CYP1A genes in human hepatoma cells and human hepatocytes. Food Chem Toxicol. 2017;103:122–32.

    Article  CAS  PubMed  Google Scholar 

  56. Patel HK, Bihani T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol Ther. 2018;186:1–24.

    Article  CAS  PubMed  Google Scholar 

  57. Perkins A, Phillips JL, Kerkvliet NI, et al. A structural switch between agonist and antagonist bound conformations for a ligand-optimized model of the human aryl hydrocarbon receptor ligand binding domain. Biology (Basel). 2014;3:645–69.

    Google Scholar 

  58. Pike AC, Brzozowski AM, Walton J, et al. Structural insights into the mode of action of a pure antiestrogen. Structure. 2001;9:145–53.

    Article  CAS  PubMed  Google Scholar 

  59. Puppala D, Gairola CG, Swanson HI. Identification of kaempferol as an inhibitor of cigarette smoke-induced activation of the aryl hydrocarbon receptor and cell transformation. Carcinogenesis. 2007;28:639–47.

    Article  CAS  PubMed  Google Scholar 

  60. Puppala D, Lee H, Kim KB, et al. Development of an aryl hydrocarbon receptor antagonist using the proteolysis-targeting chimeric molecules approach: a potential tool for chemoprevention. Mol Pharmacol. 2008;73:1064–71.

    Article  CAS  PubMed  Google Scholar 

  61. Puyang X, Furman C, Zheng GZ, et al. Discovery of selective estrogen receptor covalent antagonists for the treatment of ERalpha(WT) and ERalpha(MUT) breast cancer. Cancer Discov. 2018;8:1176–93.

    Article  CAS  PubMed  Google Scholar 

  62. Quirke VM. Tamoxifen from failed contraceptive pill to best-selling breast cancer medicine: a case-study in pharmaceutical innovation. Front Pharmacol. 2017;8:620.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Rando G, Horner D, Biserni A, et al. An innovative method to classify SERMs based on the dynamics of estrogen receptor transcriptional activity in living animals. Mol Endocrinol. 2010;24:735–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rang HP. The receptor concept: pharmacology’s big idea. Br J Pharmacol. 2006;147(Suppl 1):S9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Safe S, Wang F, Porter W, et al. Ah receptor agonists as endocrine disruptors: antiestrogenic activity and mechanisms. Toxicol Lett. 1998;102–103:343–7.

    Article  PubMed  Google Scholar 

  66. Santen RJ, Simpson E. History of estrogen: its purification, structure, synthesis, biologic actions, and clinical implications. Endocrinology. 2019;160:605–25.

    Article  PubMed  Google Scholar 

  67. Schapira M, Calabrese MF, Bullock AN, et al. Targeted protein degradation: expanding the toolbox. Nat Rev Drug Discov. 2019;18:949–63.

    Article  CAS  PubMed  Google Scholar 

  68. Schulte KW, Green E, Wilz A, et al. Structural basis for aryl hydrocarbon receptor-mediated gene activation. Structure. 2017;25:1025–33 e1023.

    Article  CAS  PubMed  Google Scholar 

  69. Seok SH, Lee W, Jiang L, et al. Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex. Proc Natl Acad Sci U S A. 2017;114:5431–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shiau AK, Barstad D, Loria PM, et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell. 1998;95:927–37.

    Article  CAS  PubMed  Google Scholar 

  71. Singh J, Chen ELY, Xing Y, et al. Generation and function of progenitor T cells from StemRegenin-1-expanded CD34+ human hematopoietic progenitor cells. Blood Adv. 2019;3:2934–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Smith KJ, Murray IA, Tanos R, et al. Identification of a high-affinity ligand that exhibits complete aryl hydrocarbon receptor antagonism. J Pharmacol Exp Ther. 2011;338:318–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stepankova M, Bartonkova I, Jiskrova E, et al. Methylindoles and methoxyindoles are agonists and antagonists of human aryl hydrocarbon receptor. Mol Pharmacol. 2018;93:631–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sun X, Gao H, Yang Y, et al. PROTACs: great opportunities for academia and industry. Signal Transduct Target Ther. 2019;4:64.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Swanson H. Dioxin response elements and regulation of gene transcription. In: Pohjanvirta P, editor. The AH receptor in biology and toxicology. Hoboken: Wiley; 2012. p. 81–91.

    Google Scholar 

  76. Swanson H. Mechanisms by which flavonoids exert their beneficial anti-cancer effects. In: Flavonoids, inflammation and cancer. Singapore: World Scientific Publishing; 2016. p. 25–58.

    Google Scholar 

  77. Swanson HI, Chan WK, Bradfield CA. DNA binding specificities and pairing rules of the Ah receptor, ARNT, and SIM proteins. J Biol Chem. 1995;270:26292–302.

    Article  CAS  PubMed  Google Scholar 

  78. Swanson HI, Choi EY, Helton WB, et al. Impact of apigenin and kaempferol on human head and neck squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;117:214–20.

    Article  PubMed  Google Scholar 

  79. Tian Y, Ke S, Denison MS, et al. Ah receptor and NF-kappaB interactions, a potential mechanism for dioxin toxicity. J Biol Chem. 1999;274:510–5.

    Article  CAS  PubMed  Google Scholar 

  80. Traboulsi T, El Ezzy M, Gleason JL, et al. Antiestrogens: structure-activity relationships and use in breast cancer treatment. J Mol Endocrinol. 2017;58:R15–31.

    Article  CAS  PubMed  Google Scholar 

  81. Tripathi T, Saxena AK. 2D- QSAR studies on new stilbene derivatives of resveratrol as a new selective aryl hydrocarbon receptor. Med Chem Res. 2008;17:212–8.

    Article  CAS  Google Scholar 

  82. Warnmark A, Treuter E, Gustafsson JA, et al. Interaction of transcriptional intermediary factor 2 nuclear receptor box peptides with the coactivator binding site of estrogen receptor alpha. J Biol Chem. 2002;277:21862–8.

    Article  CAS  PubMed  Google Scholar 

  83. Webb P, Nguyen P, Kushner PJ. Differential SERM effects on corepressor binding dictate ERalpha activity in vivo. J Biol Chem. 2003;278:6912–20.

    Article  CAS  PubMed  Google Scholar 

  84. Wijayaratne AL, Mcdonnell DP. The human estrogen receptor-alpha is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J Biol Chem. 2001;276:35684–92.

    Article  CAS  PubMed  Google Scholar 

  85. Wu D, Rastinejad F. Structural characterization of mammalian bHLH-PAS transcription factors. Curr Opin Struct Biol. 2017;43:1–9.

    Article  PubMed  CAS  Google Scholar 

  86. Wu YL, Yang X, Ren Z, et al. Structural basis for an unexpected mode of SERM-mediated ER antagonism. Mol Cell. 2005;18:413–24.

    Article  CAS  PubMed  Google Scholar 

  87. Yang SY, Ahmed S, Satheesh SV, et al. Genome-wide mapping and analysis of aryl hydrocarbon receptor (AHR)- and aryl hydrocarbon receptor repressor (AHRR)-binding sites in human breast cancer cells. Arch Toxicol. 2018;92:225–40.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang S, Qin C, Safe SH. Flavonoids as aryl hydrocarbon receptor agonists/antagonists: effects of structure and cell context. Environ Health Perspect. 2003;111:1877–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hollie I. Swanson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Swanson, H.I. (2021). What Makes a Good Antagonist: Lessons Learned from the Estrogen and Aryl Hydrocarbon Receptors. In: Badr, M.Z. (eds) Nuclear Receptors. Springer, Cham. https://doi.org/10.1007/978-3-030-78315-0_9

Download citation

Publish with us

Policies and ethics