Skip to main content

Pregnane X Receptor: Understanding Its Function and Activity at the Molecular Level

  • Chapter
  • First Online:
Nuclear Receptors
  • 882 Accesses

Abstract

The pregnane X receptor (PXR) is a ligand-activated nuclear receptor recognized as an important player in xenobiotic detoxification because it regulates the expression of drug-metabolizing enzymes and transporters. Because of its notorious role in drug metabolism and disposition, PXR’s activity may result in unintended drug-drug interactions, decreasing drug efficacy, inducing resistance, and causing toxicity. As such, PXR has become an attractive target for the development of PXR antagonists that can be used as co-drugs. However, PXR agonists have emerged as potential therapeutics against certain diseases, such as inflammatory bowel disease. This book chapter describes the molecular basis of PXR activity, correlating biochemical and structural elements to describe the promiscuous nature of PXR in recognizing a wide array of chemicals and the challenges in developing PXR modulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aranda A, Pascual A. Nuclear hormone receptors and gene expression. Physiol Rev. 2001;81(3):1269–304.

    Article  CAS  PubMed  Google Scholar 

  2. Kliewer SA, Goodwin B, Willson TM. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr Rev. 2002;23(5):687–702.

    Article  CAS  PubMed  Google Scholar 

  3. Moore LB, Parks DJ, Jones SA, et al. Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J Biol Chem. 2000;275(20):15122–7.

    Article  CAS  PubMed  Google Scholar 

  4. di Masi A, De Marinis E, Ascenzi P, Marino M. Nuclear receptors CAR and PXR: molecular, functional, and biomedical aspects. Mol Asp Med. 2009;30(5):297–343.

    Article  CAS  Google Scholar 

  5. Tolson AH, Wang H. Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv Drug Deliv Rev. 2010;62(13):1238–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Willson TM, Kliewer SA. PXR, CAR and drug metabolism. Nat Rev Drug Discov. 2002;1(4):259–66.

    Article  CAS  PubMed  Google Scholar 

  7. Wallace BD, Redinbo MR. Xenobiotic-sensing nuclear receptors involved in drug metabolism: a structural perspective. Drug Metab Rev. 2013;45(1):79–100.

    Article  CAS  PubMed  Google Scholar 

  8. Johnson CH, Patterson AD, Idle JR, Gonzalez FJ. Xenobiotic metabolomics: major impact on the metabolome. Annu Rev Pharmacol. 2012;52:37–56.

    Article  CAS  Google Scholar 

  9. Wang YM, Ong SS, Chai SC, Chen TS. Role of CAR and PXR in xenobiotic sensing and metabolism. Expert Opin Drug Metab Toxicol. 2012;8(7):803–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Mattia E, Cecchin E, Roncato R, Toffoli G. Pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors as emerging players in cancer precision medicine. Pharmacogenomics. 2016;17(14):1547–71.

    Article  PubMed  CAS  Google Scholar 

  11. Klepsch V, Moschen AR, Tilg H, Baier G, Hermann-Kleiter N. Nuclear receptors regulate intestinal inflammation in the context of IBD. Front Immunol. 2019;10:1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shehu AI, Li GM, Xie W, Ma XC. The pregnane X receptor in tuberculosis therapeutics. Expert Opin Drug Metab Toxicol. 2016;12(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  13. Chen K, Zhong JW, Hu L, et al. The role of xenobiotic receptors on hepatic glycolipid metabolism. Curr Drug Metab. 2019;20(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  14. Mackowiak B, Hodge J, Stern S, Wang HB. The roles of xenobiotic receptors: beyond chemical disposition. Drug Metab Dispos. 2018;46(9):1361–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hakkola J, Rysa J, Hukkanen J. Regulation of hepatic energy metabolism by the nuclear receptor PXR. Biochim Biophys Acta Gene Regul Mech. 2016;1859(9):1072–82.

    Article  CAS  Google Scholar 

  16. Wang YM, Chai SC, Brewer CT, Chen TS. Pregnane X receptor and drug-induced liver injury. Expert Opin Drug Metab Toxicol. 2014;10(11):1521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kliewer SA, Moore JT, Wade L, et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell. 1998;92(1):73–82.

    Article  CAS  PubMed  Google Scholar 

  18. Hodnik Z, Masic LP, Tomasic T, et al. Bazedoxifene-scaffold-based mirnetics of solomonsterols A and B as novel pregnane X receptor antagonists. J Med Chem. 2014;57(11):4819–33.

    Article  CAS  PubMed  Google Scholar 

  19. Ekins S, Chang C, Mani S, et al. Human pregnane X receptor antagonists and agonists define molecular requirements for different binding sites. Mol Pharmacol. 2007;72(3):592–603.

    Article  CAS  PubMed  Google Scholar 

  20. Sinz M, Kim S, Zhu Z, et al. Evaluation of 170 xenobiotics as transactivators of human pregnane X receptor (hPXR) and correlation to known CYP3A4 drug interactions. Curr Drug Metab. 2006;7(4):375–88.

    Article  CAS  PubMed  Google Scholar 

  21. Lin W, Wang YM, Chai SC, et al. SPA70 is a potent antagonist of human pregnane X receptor. Nat Commun. 2017;8(1):741.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Bartolini D, De Franco F, Torquato P, et al. Garcinoic acid is a natural and selective agonist of pregnane X receptor. J Med Chem. 2020;63(7):3701–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duan JJW, Lu ZH, Jiang B, et al. Structure-based discovery of phenyl (3-phenylpyrrolidin-3-yI)sulfones as selective, orally active ROR gamma t inverse agonists. ACS Med Chem Lett. 2019;10(3):367–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Werner S, Mesch S, Hillig RC, et al. Discovery and characterization of the potent and selective P2X4 inhibitor N-[4-(3-chlorophenoxy)-3-sulfamoylphenyl]-2-phenylacetamide (BAY-1797) and structure-guided amelioration of its CYP3A4 induction profile. J Med Chem. 2019;62(24):11194–217.

    Article  CAS  PubMed  Google Scholar 

  25. Focken T, Burford K, Grimwood ME, et al. Identification of CNS-penetrant aryl sulfonamides as isoform-selective Na(V)1.6 inhibitors with efficacy in mouse models of epilepsy. J Med Chem. 2019;62(21):9618–41.

    Article  CAS  PubMed  Google Scholar 

  26. Vaz RJ, Li Y, Chellaraj V, et al. Amelioration of PXR-mediated CYP3A4 induction by mGluR2 modulators. Bioorg Med Chem Lett. 2018;28(19):3194–6.

    Article  CAS  PubMed  Google Scholar 

  27. Gong H, Weinstein DS, Lu ZH, et al. Identification of bicyclic hexafluoroisopropyl alcohol sulfonamides as retinoic acid receptor-related orphan receptor gamma (ROR gamma/RORc) inverse agonists. Employing structure-based drug design to improve pregnane X receptor (PXR) selectivity. Bioorg Med Chem Lett. 2018;28(2):85–93.

    Article  CAS  PubMed  Google Scholar 

  28. Chen TS. Overcoming drug resistance by regulating nuclear receptors. Adv Drug Delivery Rev. 2010;62(13):1257–64.

    Article  CAS  Google Scholar 

  29. Watkins RE, Wisely GB, Moore LB, et al. The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science. 2001;292(5525):2329–33.

    Article  CAS  PubMed  Google Scholar 

  30. Wang HB, LeCluyse EL. Role of orphan nuclear receptors in the regulation of drug-metabolising enzymes. Clin Pharmacokinet. 2003;42(15):1331–57.

    Article  CAS  PubMed  Google Scholar 

  31. Blumberg B, Sabbagh W, Juguilon H, et al. SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev. 1998;12(20):3195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Timsit YE, Negishi M. CAR and PXR: the xenobiotic-sensing receptors. Steroids. 2007;72(3):231–46.

    Article  CAS  PubMed  Google Scholar 

  33. Watkins RE, Davis-Searles PR, Lambert MH, Redinbo MR. Coactivator binding promotes the specific interaction between ligand and the pregnane X receptor. J Mol Biol. 2003;331(4):815–28.

    Article  CAS  PubMed  Google Scholar 

  34. Buchman CD, Chai SC, Chen TS. A current structural perspective on PXR and CAR in drug metabolism. Expert Opin Drug Metab Toxicol. 2018;14(6):635–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Noble SM, Carnahan VE, Moore LB, et al. Human PXR forms a tryptophan zipper-mediated homodimer. Biochemistry. 2006;45(28):8579–89.

    Article  CAS  PubMed  Google Scholar 

  36. Wallace BD, Betts L, Talmage G, Pollet RM, Holman NS, Redinbo MR. Structural and functional analysis of the human nuclear xenobiotic receptor PXR in complex with RXRalpha. J Mol Biol. 2013;425(14):2561–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Smith CL, O'Malley BW. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev. 2004;25(1):45–71.

    Article  CAS  PubMed  Google Scholar 

  38. Xu HE, Stanley TB, Montana VG, et al. Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPAR alpha. Nature. 2002;415(6873):813–7.

    Article  CAS  PubMed  Google Scholar 

  39. Dussault I, Lin M, Hollister K, et al. A structural model of the constitutive androstane receptor defines novel interactions that mediate ligand-independent activity. Mol Cell Biol. 2002;22(15):5270–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D. Crystal-structure of the ligand-binding domain of the human nuclear receptor Rxr-alpha. Nature. 1995;375(6530):377–82.

    Article  CAS  PubMed  Google Scholar 

  41. Zhou XE, Suino-Powell KM, Xu Y, et al. The orphan nuclear receptor TR4 is a vitamin A-activated nuclear receptor. J Biol Chem. 2011;286(4):2877–85.

    Article  CAS  PubMed  Google Scholar 

  42. Kruse SW, Suino-Powell K, Zhou XE, et al. Identification of COUP-TFII orphan nuclear receptor as a retinoic acid-activated receptor. PLoS Biol. 2008;6(9):2002–15.

    Article  CAS  Google Scholar 

  43. Kojetin DJ, Burris TP. Small molecule modulation of nuclear receptor conformational dynamics: implications for function and drug discovery. Mol Pharmacol. 2013;83(1):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Frkic RL, Marshall AC, Blayo AL, et al. PPARgamma in complex with an antagonist and inverse agonist: a tumble and trap mechanism of the activation helix. iScience. 2018;5:69–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kallenberger BC, Love JD, Chatterjee VKK, Schwabe JWR. A dynamic mechanism of nuclear receptor activation and its perturbation in a human disease. Nat Struct Biol. 2003;10(2):136–40.

    Article  CAS  PubMed  Google Scholar 

  46. Uppenberg J, Svensson C, Jaki M, Bertilsson G, Jendeberg L, Berkenstam A. Crystal structure of the ligand binding domain of the human nuclear receptor PPAR gamma. J Biol Chem. 1998;273(47):31108–12.

    Article  CAS  PubMed  Google Scholar 

  47. Nolte RT, Wisely GB, Westin S, et al. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature. 1998;395(6698):137–43.

    Article  CAS  PubMed  Google Scholar 

  48. Johnson BA, Wilson EM, Li Y, Moller DE, Smith RG, Zhou GC. Ligand-induced stabilization of PPAR gamma monitored by NMR spectroscopy: implications for nuclear receptor activation. J Mol Biol. 2000;298(2):187–94.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang J, Chalmers MJ, Stayrook KR, et al. Hydrogen/deuterium exchange reveals distinct agonist/partial agonist receptor dynamics within vitamin D receptor/retinoid X receptor heterodimer. Structure. 2010;18(10):1332–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Suino K, Peng L, Reynolds R, et al. The nuclear xenobiotic receptor CAR: structural determinants of constitutive activation and heterodimerization. Mol Cell. 2004;16(6):893–905.

    CAS  PubMed  Google Scholar 

  51. Xu RX, Lambert MH, Wisely BB, et al. A structural basis for constitutive activity in the human CAR/RXRalpha heterodimer. Mol Cell. 2004;16(6):919–28.

    Article  CAS  PubMed  Google Scholar 

  52. Martinez L, Sonoda MT, Webb P, Baxter JD, Skaf MS, Polikarpov I. Molecular dynamics simulations reveal multiple pathways of ligand dissociation from thyroid hormone receptors. Biophys J. 2005;89(3):2011–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Aci-Seche S, Genest M, Garnier N. Ligand entry pathways in the ligand binding domain of PPAR gamma receptor. FEBS Lett. 2011;585(16):2599–603.

    Article  CAS  PubMed  Google Scholar 

  54. Figueira ACM, Saidemberg DM, Souza PCT, et al. Analysis of agonist and antagonist effects on thyroid hormone receptor conformation by hydrogen/deuterium exchange. Mol Endocrinol. 2011;25(1):15–31.

    Article  CAS  PubMed  Google Scholar 

  55. Cherian MT, Chai SC, Wright WC, et al. CINPA1 binds directly to constitutive androstane receptor and inhibits its activity. Biochem Pharmacol. 2018;152:211–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chai SC, Cherian MT, Wang YM, Chen T. Small-molecule modulators of PXR and CAR. Biochim Biophys Acta. 2016;1859(9):1141–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Watkins RE, Maglich JM, Moore LB, et al. 2.1 angstrom crystal structure of human PXR in complex with the St. John’s wort compound hyperforin. Biochemistry. 2003;42(6):1430–8.

    Article  CAS  PubMed  Google Scholar 

  58. Chrencik JE, Orans J, Moore LB, et al. Structural disorder in the complex of human pregnane X receptor and the macrolide antibiotic rifampicin. Mol Endocrinol. 2005;19(5):1125–34.

    Article  CAS  PubMed  Google Scholar 

  59. Orans J, Teotico DG, Redinbo MR. The nuclear xenobiotic receptor pregnane X receptor: recent insights and new challenges. Mol Endocrinol. 2005;19(12):2891–900.

    Article  CAS  PubMed  Google Scholar 

  60. Xue Y, Chao E, Zuercher WJ, Willson TM, Collins JL, Redinbo MR. Crystal structure of the PXR-T1317 complex provides a scaffold to examine the potential for receptor antagonism. Bioorg Med Chem. 2007;15(5):2156–66.

    Article  CAS  PubMed  Google Scholar 

  61. Delfosse V, Dendele B, Huet T, et al. Synergistic activation of human pregnane X receptor by binary cocktails of pharmaceutical and environmental compounds. Nat Commun. 2015;6:1–10.

    Article  Google Scholar 

  62. Ekins S, Mirny L, Schuetz EG. A ligand-based approach to understanding selectivity of nuclear hormone receptors PXR, CAR, FXR, LXR alpha, and LXR beta. Pharm Res-Dordr. 2002;19(12):1788–800.

    Article  CAS  Google Scholar 

  63. Xie W, Barwick JL, Downes M, et al. Humanized xenobiotic response in mice expressing nuclear receptor SXR. Nature. 2000;406(6794):435–9.

    Article  CAS  PubMed  Google Scholar 

  64. Gong HB, Singh SV, Singh SP, et al. Orphan nuclear receptor pregnane X receptor sensitizes oxidative stress responses in transgenic mice and cancerous cells. Mol Endocrinol. 2006;20(2):279–90.

    Article  CAS  PubMed  Google Scholar 

  65. Ma X, Shah Y, Cheung C, et al. The pregnane X receptor gene-humanized mouse: a model for investigating drug-drug interactions mediated by cytochromes P450 3A. Drug Metab Dispos. 2007;35(2):194–200.

    Article  CAS  PubMed  Google Scholar 

  66. Ma X, Cheung C, Krausz KW, et al. A double transgenic mouse model expressing human pregnane X receptor and cytochrome P450 3A4. Drug Metab Dispos. 2008;36(12):2506–12.

    Article  CAS  PubMed  Google Scholar 

  67. Scheer N, Ross J, Rode A, et al. A novel panel of mouse models to evaluate the role of human pregnane X receptor and constitutive androstane receptor in drug response. J Clin Invest. 2008;118(9):3228–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Igarashi K, Kitajima S, Aisaki K, et al. Development of humanized steroid and xenobiotic receptor mouse by homologous knock-in of the human steroid and xenobiotic receptor ligand binding domain sequence. J Toxicol Sci. 2012;37(2):373–80.

    Article  CAS  PubMed  Google Scholar 

  69. Sinz MW. Evaluation of pregnane X receptor (PXR)-mediated CYP3A4 drug-drug interactions in drug development. Drug Metab Rev. 2013;45(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  70. Staudinger JL. Clinical applications of small molecule inhibitors of Pregnane X receptor. Mol Cell Endocrinol. 2019;485:61–71.

    Article  CAS  PubMed  Google Scholar 

  71. Chai SC, Wright WC, Chen TS. Strategies for developing pregnane X receptor antagonists: implications from metabolism to cancer. Med Res Rev. 2020;40(3):1061–83.

    Article  CAS  PubMed  Google Scholar 

  72. Toporova L, Grimaldi M, Boulahtouf A, Balaguer P. Assessing the selectivity of FXR, LXRs, CAR, and ROR gamma pharmaceutical ligands with reporter cell lines. Front Pharmacol. 2020;11:1122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. van Kesteren C, de Vooght MMM, Lopez-Lazaro L, et al. Yondelis (R) (trabectedin, ET-743): the development of an anticancer agent of marine origin. Anti-Cancer Drug. 2003;14(7):487–502.

    Article  Google Scholar 

  74. Synold TW, Dussault I, Forman BM. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med. 2001;7(5):584–90.

    Article  CAS  PubMed  Google Scholar 

  75. Aune GJ, Furuta T, Pommier Y. Ecteinascidin 743: a novel anticancer drug with a unique mechanism of action. Anti-Cancer Drug. 2002;13(6):545–55.

    Article  CAS  Google Scholar 

  76. Zhou CC, Poulton EJ, Grun F, et al. The dietary isothiocyanate sulforaphane is an antagonist of the human steroid and xenobiotic nuclear receptor. Mol Pharmacol. 2007;71(1):220–9.

    Article  CAS  PubMed  Google Scholar 

  77. Poulton EJ, Levy L, Lampe JW, et al. Sulforaphane is not an effective antagonist of the human pregnane X-receptor in vivo. Toxicol Appl Pharm. 2013;266(1):122–31.

    Article  CAS  Google Scholar 

  78. Atwell LL, Zhang Z, Mori M, et al. Sulforaphane bioavailability and chemopreventive activity in women scheduled for breast biopsy. Cancer Prev Res (Phila). 2015;8:1184–91.

    Article  CAS  Google Scholar 

  79. Wang HW, Li H, Moore LB, et al. The phytoestrogen Coumestrol is a naturally occurring antagonist of the human pregnane x receptor. Mol Endocrinol. 2008;22(4):838–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lim YP, Ma CY, Liu CL, et al. Sesamin: a naturally occurring lignan inhibits CYP3A4 by antagonizing the pregnane X receptor activation. Evid Based Complement Alternat Med. 2012;2012:242810.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Chen YK, Tang Y, Robbins GT, Nie DT. Camptothecin attenuates cytochrome P450 3A4 induction by blocking the activation of human pregnane X receptor. J Pharmacol Exp Ther. 2010;334(3):999–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ekins S, Kholodovych V, Ai N, et al. Computational discovery of novel low micromolar human pregnane X receptor antagonists. Mol Pharmacol. 2008;74(3):662–72.

    Article  CAS  PubMed  Google Scholar 

  83. Mani S, Dou W, Redinbo MR. PXR antagonists and implication in drug metabolism. Drug Metab Rev. 2013;45(1):60–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Krausova L, Stejskaova L, Wang HW, et al. Metformin suppresses pregnane X receptor (PXR)-regulated transactivation of CYP3A4 gene. Biochem Pharmacol. 2011;82(11):1771–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Healan-Greenberg C, Waring JF, Kempf DJ, Blomme EAG, Tirona RG, Kim RB. A human immunodeficiency virus protease inhibitor is a novel functional inhibitor of human pregnane x receptor. Drug Metab Dispos. 2008;36(3):500–7.

    Article  CAS  PubMed  Google Scholar 

  86. Tabb MM, Kholodovych V, Grun F, Zhou CC, Welsh WJ, Blumberg B. Highly chlorinated PCBs inhibit the human xenobiotic response mediated by the steroid and xenobiotic receptor (SXR). Environ Health Perspect. 2004;112(2):163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Huber AD, Wright WC, Lin WW, et al. Mutation of a single amino acid of pregnane X receptor switches an antagonist to agonist by altering AF-2 helix positioning. Cell Mol Life Sci. 2021;78:317–35.

    Article  CAS  PubMed  Google Scholar 

  88. Cheng J, Shah YM, Gonzalez FJ. Pregnane X receptor as a target for treatment of inflammatory bowel disorders. Trends Pharmacol Sci. 2012;33(6):323–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Langmann T, Moehle C, Mauerer R, et al. Loss of detoxification in inflammatory bowel disease: dysregulation of pregnane X receptor target genes. Gastroenterology. 2004;127(1):26–40.

    Article  CAS  PubMed  Google Scholar 

  90. Cheng J, Shah YM, Ma XC, et al. Therapeutic role of rifaximin in inflammatory bowel disease: clinical implication of human pregnane X receptor activation. J Pharmacol Exp Ther. 2010;335(1):32–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Khan KJ, Ullman TA, Ford AC, et al. Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroenterol. 2011;106(4):661–73.

    Article  CAS  PubMed  Google Scholar 

  92. Zhou C, Tabb MM, Nelson EL, et al. Mutual repression between steroid and xenobiotic receptor and NF-kappa B signaling pathways links xenobiotic metabolism and inflammation. J Clin Investig. 2006;116(8):2280–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sepe V, Ummarino R, D'Auria MV, et al. Total synthesis and pharmacological characterization of Solomonsterol A, a potent marine pregnane-X-receptor agonist endowed with anti-inflammatory activity. J Med Chem. 2011;54(13):4590–9.

    Article  CAS  PubMed  Google Scholar 

  94. Burk O, Arnold KA, Nussler AK, et al. Antimalarial artemisinin drugs induce cytochrome p450 and MDR1 expression by activation of xenosensors pregnane X receptor and constitutive androstane receptor. Mol Pharmacol. 2005;67(6):1954–65.

    Article  CAS  PubMed  Google Scholar 

  95. Hu DH, Wang YG, Chen ZW, et al. Artemisinin protects against dextran sulfate-sodium-induced inflammatory bowel disease, which is associated with activation of the pregnane X receptor. Eur J Pharmacol. 2014;738:273–84.

    Article  CAS  PubMed  Google Scholar 

  96. Dou W, Zhang JJ, Zhang EY, et al. Chrysin ameliorates chemically induced colitis in the mouse through modulation of a PXR/NF-kappa B signaling pathway. J Pharmacol Exp Ther. 2013;345(3):473–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dou W, Zhang JJ, Li H, et al. Plant flavonol isorhamnetin attenuates chemically induced inflammatory bowel disease via a PXR-dependent pathway. J Nutr Biochem. 2014;25(9):923–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ma XC, Shah YM, Guo GL, et al. Rifaximin is a gut-specific human pregnane X receptor activator. J Pharmacol Exp Ther. 2007;322(1):391–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The work reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM118041. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors thank ALSAC for their support, Cherise Guess, PhD, ELS, for editing the manuscript, and other members of the Chen research laboratory for valuable discussions of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taosheng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chai, S.C., Chen, T. (2021). Pregnane X Receptor: Understanding Its Function and Activity at the Molecular Level. In: Badr, M.Z. (eds) Nuclear Receptors. Springer, Cham. https://doi.org/10.1007/978-3-030-78315-0_7

Download citation

Publish with us

Policies and ethics