Skip to main content

Structure-Based Design of Estrogen-Related Receptors Modulators

  • Chapter
  • First Online:
Nuclear Receptors

Abstract

Estrogen-related receptors (ERRs) are members of the nuclear hormone receptor (NR) superfamily. The ERR subfamily comprise three members, ERRα, ERRβ, and ERRγ. They are closely related to the estrogen receptors (ERα and ERβ), but unlike ER receptors, ERRs have constitutive activity and can function in the absence of ligands. The ERRs are orphan receptors because no natural ligands have been identified for any of the three ERR isoforms. Although ERRs are structurally related to ERs and share sequence similarity with these receptors, they do not bind with estrogens. ERRs are expressed mostly in all tissues that have been examined to date with variation of the level and type of isoform existed in a particular tissue. ERRs play an essential role in many physiological processes, and they are potential therapeutic targets in many disease areas such as Alzheimer’s disease, cancer, diabetes, and other metabolic diseases. In this chapter, we mainly focus on the structure and function of ERRs, and the medicinal chemistry efforts to design modulators of these receptors. We put great emphasis on the structure-based design of ERR modulators, which we believe is an essential tool to advance the drug discovery in this particular research area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giguère V, Yang N, Segui P, Evans RM. Identification of a new class of steroid hormone receptors. Nature. 1988;331:91–4.

    Article  Google Scholar 

  2. Escriva H, Delaunay F, Laudet V. Ligand binding and nuclear receptor evolution. BioEssays. 2016;2000(1878):753–60. https://doi.org/10.1002/1521-1878(200008)22.

    Article  Google Scholar 

  3. Heard DJ, Norby PL, Holloway J, Vissing H. Human ERRγ a third member of the estrogen receptor-related receptor (ERR) subfamily of orphan nuclear receptors: tissue-specific isoforms are expressed during development and in the adult. Mol Endocrinol. 2000;14(3):382–92. https://doi.org/10.1210/me.14.3.382.

    Article  CAS  PubMed  Google Scholar 

  4. Nuclear Receptor Superfamily. A unified nomenclature system for the nuclear receptor superfamily. Cell. 1999;97(100):161–3.

    Google Scholar 

  5. Eudy JD, Yao S, Weston MD, Ma-Edmonds M, Talmadge CB, Cheng JJ, Kimberling WJ, Sumegi J. Isolation of a gene encoding a novel member of the nuclear receptor superfamily from the critical region of usher syndrome type IIa at 1q41. Genomics. 1998;50(3):382–4. https://doi.org/10.1006/geno.1998.5345.

    Article  CAS  PubMed  Google Scholar 

  6. Hong H, Yang L, Stallcup MR. Hormone-independent transcriptional activation and coactivator binding by novel orphan nuclear receptor ERR3. J Biol Chem. 1999;274(32):22618–26. https://doi.org/10.1074/jbc.274.32.22618.

    Article  CAS  PubMed  Google Scholar 

  7. Sladek R, Bader JA, Giguère V. The orphan nuclear receptor estrogen-related receptor alpha is a transcriptional regulator of the human medium-chain acyl coenzyme a dehydrogenase gene. Mol Cell Biol. 1997;17(9):5400–9. https://doi.org/10.1128/mcb.17.9.5400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell. 2006;126(4):789–99. https://doi.org/10.1016/j.cell.2006.06.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ichida M, Nemoto S, Finkel T. Identification of a specific molecular repressor of the peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α). J Biol Chem. 2002;277(52):50991–5. https://doi.org/10.1074/jbc.M210262200.

    Article  CAS  PubMed  Google Scholar 

  10. Fu M, Sun T, Bookout AL, Downes M, Yu RT, Evans RM, Mangelsdorf DJ. A nuclear receptor atlas: 3T3-L1 adipogenesis. Mol Endocrinol. 2005;19(10):2437–50. https://doi.org/10.1210/me.2004-0539.

    Article  CAS  PubMed  Google Scholar 

  11. Sonoda J, Laganière J, Mehl IR, Barish GD, Chong L, Li X, Scheffler IE, Mock DC, Bataille AR, Robert F, et al. Nuclear receptor ERR alpha and coactivator PGC-1 beta are effectors of IFN-gamma-induced host defense. Genes Dev. 2007;21:1909–20. https://doi.org/10.1101/gad.1553007.oxide.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barish GD, Downes M, Alaynick WA, Yu RT, Ocampo CB, Bookout AL, Mangelsdorf DJ, Evans RM. A nuclear receptor atlas: macrophage activation. Mol Endocrinol. 2005;19(10):2466–77. https://doi.org/10.1210/me.2004-0529.

    Article  CAS  PubMed  Google Scholar 

  13. Di Micco S, Renga B, Carino A, D’Auria MV, Zampella A, Riccio R, Fiorucci S, Bifulco G. Structural insights into estrogen related receptor-β modulation: 4-methylenesterols from Theonella swinhoei sponge as the first example of marine natural antagonists. Steroids. 2014;80:51–63. https://doi.org/10.1016/j.steroids.2013.11.017.

    Article  CAS  PubMed  Google Scholar 

  14. Gowda K, Marks BD, Zielinski TK, Ozers MS. Development of a coactivator displacement assay for the orphan receptor estrogen-related receptor-γ using time-resolved fluorescence resonance energy transfer. Anal Biochem. 2006;357(1):105–15. https://doi.org/10.1016/j.ab.2006.06.029.

    Article  CAS  PubMed  Google Scholar 

  15. Huss JM, Garbacz WG, Xie W. Constitutive activities of estrogen-related receptors: transcriptional regulation of metabolism by the ERR pathways in health and disease. Biochim Biophys Acta. 2015;1852(9):1912–27. https://doi.org/10.1016/j.bbadis.2015.06.016.

    Article  CAS  PubMed  Google Scholar 

  16. Misawa A, Inoue S. Estrogen-related receptors in breast cancer and prostate cancer. Front Endocrinol (Lausanne). 2015;6:1–7. https://doi.org/10.3389/fendo.2015.00083.

    Article  Google Scholar 

  17. Yang N, Shigeta H, Shi H, Teng CT. Estrogen-related receptor, HERR1, modulates estrogen receptor-mediated response of human lactoferrin gene promoter. J Biol Chem. 1996;271(10):5795–804. https://doi.org/10.1074/jbc.271.10.5795.

    Article  CAS  PubMed  Google Scholar 

  18. Vanacker JM, Pettersson K, Gustafsson JÅ, Laudet V. Transcriptional targets shared by estrogen receptor-related receptors (ERRs) and estrogen receptor (ER) α, but not by ERβ. EMBO J. 1999;18(15):4270–9. https://doi.org/10.1093/emboj/18.15.4270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu D, Kiriyama Y, Lee KY, Giguère V. Transcriptional regulation of the estrogen-inducible PS2 breast cancer marker gene by the ERR family of orphan nuclear receptors. Cancer Res. 2001;61(18):6755–61.

    CAS  PubMed  Google Scholar 

  20. Yang C, Zhou D, Chen S. Modulation of aromatase expression in the breast tissue by ERRα-1 orphan receptor. Cancer Res. 1998;58(24):5695–700.

    CAS  PubMed  Google Scholar 

  21. Dufour CR, Wilson BJ, Huss JM, Kelly DP, Alaynick WA, Downes M, Evans RM, Blanchette M, Giguère V. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRα and γ. Cell Metab. 2007;5(5):345–56. https://doi.org/10.1016/j.cmet.2007.03.007.

    Article  CAS  PubMed  Google Scholar 

  22. Gearhart MD, Holmbeck SMA, Evans RM, Dyson HJ, Wright PE. Monomeric complex of human orphan estrogen related receptor-2 with DNA: a pseudo-dimer interface mediates extended half-site recognition. J Mol Biol. 2003;327(4):819–32. https://doi.org/10.1016/S0022-2836(03)00183-9.

    Article  CAS  PubMed  Google Scholar 

  23. Barry JB, Laganière J, Giguère V. A single nucleotide in an estrogen-related receptor α site can dictate mode of binding and peroxisome proliferator-activated receptor γ coactivator 1α activation of target promoters. Mol Endocrinol. 2006;20(2):302–10. https://doi.org/10.1210/me.2005-0313.

    Article  CAS  PubMed  Google Scholar 

  24. Huppunen J, Aarnisalo P. Dimerization modulates the activity of the orphan nuclear receptor ERRγ. Biochem Biophys Res Commun. 2004;314(4):964–70. https://doi.org/10.1016/j.bbrc.2003.12.194.

    Article  CAS  PubMed  Google Scholar 

  25. Razzaque MA, Masuda N, Maeda Y, Endo Y, Tsukamoto T, Osumi T. Estrogen receptor-related receptor γ has an exceptionally broad specificity of DNA sequence recognition. Gene. 2004;340(2):275–82. https://doi.org/10.1016/j.gene.2004.07.010.

    Article  CAS  PubMed  Google Scholar 

  26. Gaillard S, Dwyer MA, McDonnell DP. Definition of the molecular basis for estrogen receptor-related receptor-α-cofactor interactions. Mol Endocrinol. 2007;21(1):62–76. https://doi.org/10.1210/me.2006-0179.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Z, Teng CT. Estrogen receptor-related receptor interacts with coactivator and constitutively activates the estrogen response elements of the human lactoferrin gene. J Biol Chem. 2000;275(27):20837–46. https://doi.org/10.1074/jbc.M001880200.

    Article  CAS  PubMed  Google Scholar 

  28. Greschik H, Wurtz JM, Sanglier S, Bourguet W, Van Dorsselaer A, Moras D, Renaud JP. Structural and functional evidence for ligand-independent transcriptional activation by the estrogen-related receptor 3. Mol Cell. 2002;9(2):303–13. https://doi.org/10.1016/S1097-2765(02)00444-6.

    Article  CAS  PubMed  Google Scholar 

  29. Sanyal S, Kim JY, Kim HJ, Takeda J, Lee YK, Moore DD, Choi HS. Differential regulation of the orphan nuclear receptor small heterodimer partner (SHP) gene promoter by orphan nuclear receptor ERR isoforms. J Biol Chem. 2002;277(3):1739–48. https://doi.org/10.1074/jbc.M106140200.

    Article  CAS  PubMed  Google Scholar 

  30. Gaillard S, Grasfeder LL, Haeffele CL, Lobenhofer EK, Chu TM, Wolfinger R, Kazmin D, Koves TR, Muoio DM, Chang CY, et al. Receptor-selective coactivators as tools to define the biology of specific receptor-coactivator pairs. Mol Cell. 2006;24(5):797–803. https://doi.org/10.1016/j.molcel.2006.10.012.

    Article  CAS  PubMed  Google Scholar 

  31. Xia H, Dufour CR, Giguère V. ERRα as a bridge between transcription and function: role in liver metabolism and disease. Front Endocrinol (Lausanne). 2019;10:1–13. https://doi.org/10.3389/fendo.2019.00206.

    Article  Google Scholar 

  32. Kamei Y, Ohizumi H, Fujitani Y, Nemoto T, Tanaka T, Takahashi N, Kawada T, Miyoshi M, Ezaki O, Kakizuka A. PPARγ coactivator 1β/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc Natl Acad Sci U S A. 2003;100(21):12378–83. https://doi.org/10.1073/pnas.2135217100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schreiber SN, Emter R, Hock MB, Knutti D, Cardenas J, Podvinec M, Oakeley EJ, Kralli A. The estrogen-related receptor α (ERRα) functions in PPARγ coactivator 1α (PGC-1α)-induced mitochondrial biogenesis. PNAS. 2004;101(17):6472–7.

    Article  CAS  Google Scholar 

  34. Willy PJ, Murray IR, Qian J, Busch BB, Stevens WC, Martin R, Mohan R, Zhou S, Ordentlich P, Wei P, et al. Regulation of PPARγ coactivator 1α (PGC-1α) signaling by an estrogen-related receptor α (ERRα) ligand. Proc Natl Acad Sci U S A. 2004;101(24):8912–7. https://doi.org/10.1073/pnas.0401420101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ramjiawan A, Bagchi RA, Albak L, Czubryt MP. Mechanism of cardiomyocyte PGC-1α gene regulation by ERRα. Biochem Cell Biol. 2013;91(3):148–54. https://doi.org/10.1139/bcb-2012-0080.

    Article  CAS  PubMed  Google Scholar 

  36. Audet-Walsh É, Giguére V. The multiple universes of estrogen-related receptor α and γ in metabolic control and related diseases. Acta Pharmacol Sin. 2015;36(1):51–61. https://doi.org/10.1038/aps.2014.121.

    Article  CAS  PubMed  Google Scholar 

  37. Boudjadi S, Bernatchez G, Beaulieu JF, Carrier JC. Control of the human osteopontin promoter by ERRα in colorectal cancer. Am J Pathol. 2013;183(1):266–76. https://doi.org/10.1016/j.ajpath.2013.03.021.

    Article  CAS  PubMed  Google Scholar 

  38. Lu N, Wang W, Liu J, Wong CW. Protein kinase C epsilon affects mitochondrial function through estrogen-related receptor alpha. Cell Signal. 2011;23(9):1473–8. https://doi.org/10.1016/j.cellsig.2011.04.010.

    Article  CAS  PubMed  Google Scholar 

  39. Bae S, Lee MJ, Mun SH, Giannopoulou EG, Yong-Gonzalez V, Cross JR, Murata K, Giguère V, Van Der Meulen M, Park-Min KH. MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRα. J Clin Invest. 2017;127(7):2555–68. https://doi.org/10.1172/JCI89935.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhao Y, Li Y, Lou G, Zhao L, Xu Z, Zhang Y, He F. MiR-137 targets estrogen-related receptor alpha and impairs the proliferative and migratory capacity of breast cancer cells. PLoS One. 2012;7(6):e39102. https://doi.org/10.1371/journal.pone.0039102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ariazi EA, Clark GM, Mertz JE. Estrogen-related receptor α and estrogen-related receptor γ associate with unfavorable and favorable biomarkers, respectively, in human breast cancer. Cancer Res. 2002;62(22):6510–8.

    CAS  PubMed  Google Scholar 

  42. Herzog B, Cardenas J, Hall RK, Villena JA, Budge PJ, Giguère V, Granner DK, Kralli A. Estrogen-related receptor α is a repressor of phosphoenolpyruvate carboxykinase gene transcription. J Biol Chem. 2006;281(1):99–106. https://doi.org/10.1074/jbc.M509276200.

    Article  CAS  PubMed  Google Scholar 

  43. Villena JA, Hock MB, Chang WY, Barcas JE, Giguère V, Kralli A. Orphan nuclear receptor estrogen-related receptor α is essential for adaptive thermogenesis. Proc Natl Acad Sci U S A. 2007;104(4):1418–23. https://doi.org/10.1073/pnas.0607696104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Michalek RD, Gerriets VA, Nichols AG, Inoue M, Kazmin D, Chang CY, Dwyer MA, Nelson ER, Pollizzi KN, Ilkayeva O, et al. Estrogen-related receptor-α is a metabolic regulator of effector T-cell activation and differentiation. Proc Natl Acad Sci U S A. 2011;108(45):18348–53. https://doi.org/10.1073/pnas.1108856108.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jin KS, Park JK, Yoon J, Rho Y, Kim JH, Kim EEK, Ree M. Small-angle X-ray scattering studies on structures of an estrogen-related receptor α ligand binding domain and its complexes with ligands and coactivators. J Phys Chem B. 2008;112(32):9603–12. https://doi.org/10.1021/jp800120r.

    Article  CAS  PubMed  Google Scholar 

  46. Gibson DA, Saunders PTK. Estrogen dependent signaling in reproductive tissues – a role for estrogen receptors and estrogen related receptors. Mol Cell Endocrinol. 2012;348(2):361–72. https://doi.org/10.1016/j.mce.2011.09.026.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang L, Wong J, Vanacker JM. The estrogen-related receptors (ERRs): potential targets against bone loss. Cell Mol Life Sci. 2016;73(20):3781–7. https://doi.org/10.1007/s00018-016-2328-5.

    Article  CAS  PubMed  Google Scholar 

  48. Laudet V. Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J Mol Endocrinol. 1997;19(3):207–26. https://doi.org/10.1677/jme.0.0190207.

    Article  CAS  PubMed  Google Scholar 

  49. Stein RA, McDonnell DP. Estrogen-related receptor α as a therapeutic target in cancer. Endocr Relat Cancer. 2006;13(Suppl. 1):25–32. https://doi.org/10.1677/erc.1.01292.

    Article  CAS  Google Scholar 

  50. Horard B, Vanacker JM. Estrogen receptor-related receptors: orphan receptors desperately seeking a ligand. J Mol Endocrinol. 2003;31(3):349–57. https://doi.org/10.1677/jme.0.0310349.

    Article  CAS  PubMed  Google Scholar 

  51. Wang L, Zuercher WJ, Consler TG, Lambert MH, Miller AB, Orband-Miller LA, McKee DD, Willson TM, Nolte RT. X-ray crystal structures of the estrogen-related receptor-γ ligand binding domain in three functional states reveal the molecular basis of small molecule regulation. J Biol Chem. 2006;281(49):37773–81. https://doi.org/10.1074/jbc.M608410200.

    Article  CAS  PubMed  Google Scholar 

  52. Shi H, Shigeta H, Yang N, Fu K, O’Brian G, Teng CT. Human estrogen receptor-like 1 (ESRL1) gene: genomic organization, chromosomal localization, and promoter characterization. Genomics. 1997;44(1):52–60. https://doi.org/10.1006/geno.1997.4850.

    Article  CAS  PubMed  Google Scholar 

  53. Sladek R, Beatty B, Squire J, Copeland NG, Gilbert DJ, Jenkins NA, Giguère V. Chromosomal mapping of the human and murine orphan receptors ERRα (ESRRA) and ERRβ (ESRRB) and identification of a novel human ERRα-related pseudogene. Genomics. 1997;45(2):320–6. https://doi.org/10.1006/geno.1997.4939.

    Article  CAS  PubMed  Google Scholar 

  54. Johnston SD, Liu X, Zuo F, Eisenbraun TL, Wiley SR, Kraus RJ, Mertz JE. Estrogen-related receptor Α1 functionally binds as a monomer to extended half-site sequences including ones contained within estrogen-response elements. Mol Endocrinol. 1997;11(3):342–52. https://doi.org/10.1210/mend.11.3.9897.

    Article  CAS  PubMed  Google Scholar 

  55. Chen F, Zhang Q, McDonald T, Davidoff MJ, Bailey W, Bai C, Liu Q, Caskey CT. Identification of two HERR2-related novel nuclear receptors utilizing bioinformatics and inverse PCR. Gene. 1999;228(1–2):101–9. https://doi.org/10.1016/S0378-1119(98)00619-2.

    Article  CAS  PubMed  Google Scholar 

  56. Süsens U, Hermans-Borgmeyer I, Borgmeyer U. Alternative splicing and expression of the mouse estrogen receptor-related receptor γ. Biochem Biophys Res Commun. 2000;267(2):532–5. https://doi.org/10.1006/bbrc.1999.1976.

    Article  CAS  PubMed  Google Scholar 

  57. Hentschke M, Borgmeyer U. Identification of PNRC2 and TLE1 as activation function-1 cofactors of the orphan nuclear receptor ERRγ. Biochem Biophys Res Commun. 2003;312(4):975–82. https://doi.org/10.1016/j.bbrc.2003.11.025.

    Article  CAS  PubMed  Google Scholar 

  58. Kallen J, Schlaeppi JM, Bitsch F, Filipuzzi I, Schilb A, Riou V, Graham A, Strauss A, Geiser M, Fournier B. Evidence for ligand-independent transcriptional activation of the human estrogen-related receptor α (ERRα): crystal structure of ERRα ligand binding domain in complex with peroxisome proliferator-activated receptor coactivator-1α. J Biol Chem. 2004;279(47):49330–7. https://doi.org/10.1074/jbc.M407999200.

    Article  CAS  PubMed  Google Scholar 

  59. Wilson BJ, Tremblay AM, Deblois G, Sylvain-Drolet G, Giguère V. An acetylation switch modulates the transcriptional activity of estrogen-related receptor α. Mol Endocrinol. 2010;24(7):1349–58. https://doi.org/10.1210/me.2009-0441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tremblay AM, Wilson BJ, Yang XJ, Giguère V. Phosphorylation-dependent sumoylation regulates estrogen-related receptor-β and -γ transcriptional activity through a synergy control motif. Mol Endocrinol. 2008;22(3):570–84. https://doi.org/10.1210/me.2007-0357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xie W, Hong H, Yang NN, Lin RJ, Simon CM, Stallcup MR, Evans RM. Constitutive activation of transcription and binding of coactivator by estrogen-related receptors 1 and 2. Mol Endocrinol. 1999;13(12):2151–62. https://doi.org/10.1210/mend.13.12.0381.

    Article  CAS  PubMed  Google Scholar 

  62. Chen S, Zhou D, Yang C, Sherman M. Molecular basis for the constitutive activity of estrogen-related receptor α-1. J Biol Chem. 2001;276(30):28465–70. https://doi.org/10.1074/jbc.M102638200.

    Article  CAS  PubMed  Google Scholar 

  63. Hyatt SM, Lockamy EL, Stein RA, McDonnell DP, Miller AB, Orband-Miller LA, Willson TM, Zuercher WJ. On the intractability of estrogen-related receptor α as a target for activation by small molecules. J Med Chem. 2007;50(26):6722–4. https://doi.org/10.1021/jm7012387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kallen J, Lattmann R, Beerli R, Blechschmidt A, Blommers MJJ, Geiser M, Ottl J, Schlaeppi JM, Strauss A, Fournier B. Crystal structure of human estrogen-related receptor α in complex with a synthetic inverse agonist reveals its novel molecular mechanism. J Biol Chem. 2007;282(32):23231–9. https://doi.org/10.1074/jbc.M703337200.

    Article  CAS  PubMed  Google Scholar 

  65. Busch BB, Stevens WC, Martin R, Ordentlich P, Zhou S, Sapp DW, Horlick RA, Mohan R. Identification of a selective inverse agonist for the orphan nuclear receptor estrogen-related receptor α. J Med Chem. 2004;47(23):5593–6. https://doi.org/10.1021/jm049334f.

    Article  CAS  PubMed  Google Scholar 

  66. Chen L, Wong C. Estrogen-related receptor α inverse agonist enhances basal glucose uptake in myotubes through reactive oxygen species. Biol Pharm Bull. 2009;32(7):1199–203. https://doi.org/10.1248/bpb.32.1199.

    Article  CAS  PubMed  Google Scholar 

  67. Wu F, Wang J, Wang Y, Kwok TT, Kong SK, Wong C. Estrogen-related receptor α (ERRα) inverse agonist XCT-790 induces cell death in chemotherapeutic resistant cancer cells. Chem Biol Interact. 2009;181(2):236–42. https://doi.org/10.1016/j.cbi.2009.05.008.

    Article  CAS  PubMed  Google Scholar 

  68. Eskiocak B, Ali A, White MA. The estrogen-related receptor α inverse agonist XCT 790 is a nanomolar mitochondrial uncoupler. Biochemistry. 2014;53(29):4839–46. https://doi.org/10.1021/bi500737n.

    Article  CAS  PubMed  Google Scholar 

  69. Wu YM, Chen ZJ, Jiang GM, Zhang KS, Liu Q, Liang SW, Zhou Y, Huang HB, Du J, Wang HS. Inverse agonist of estrogen-related receptor α suppresses the growth of triple negative breast cancer cells through ROS generation and interaction with multiple cell signaling pathways. Oncotarget. 2016;7(11):12568–81. https://doi.org/10.18632/oncotarget.7276.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chisamore MJ, Mosley RT, Cai SJ, Birzin ET, O’Donnell G, Zuck P, Flores O, Schaeffer J, Rohrer SP, Chen JD, et al. Identification of small molecule estrogen-related receptor α-specific antagonists and homology modeling to predict the molecular determinants as the basis for selectivity over ERRβ and ERRγ. Drug Dev Res. 2008;69(4):203–18. https://doi.org/10.1002/ddr.20246.

    Article  CAS  Google Scholar 

  71. Chisamore MJ, Cunningham ME, Flores O, Wilkinson HA, Chen JD. Characterization of a novel small molecule subtype specific estrogen-related receptor α antagonist in MCF-7 breast cancer cells. PLoS One. 2009;4(5):e5624. https://doi.org/10.1371/journal.pone.0005624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Duellman SJ, Calaoagan JM, Sato BG, Fine R, Klebansky B, Chao WR, Hobbs P, Collins N, Sambucetti L, Laderoute KR. A novel steroidal inhibitor of estrogen-related receptor α (ERRα). Biochem Pharmacol. 2010;80(6):819–26. https://doi.org/10.1016/j.bcp.2010.05.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang L, Liu P, Chen H, Li Q, Chen L, Qi H, Shi X, Du Y. Characterization of a selective inverse agonist for estrogen related receptor α as a potential agent for breast cancer. Eur J Pharmacol. 2016;789:439–48. https://doi.org/10.1016/j.ejphar.2016.08.008.

    Article  CAS  PubMed  Google Scholar 

  74. Ning Y, Chen H, Du Y, Ling H, Zhang L, Chen L, Qi H, Shi X, Li Q. A novel compound LingH2-10 inhibits the growth of triple negative breast cancer cells in vitro and in vivo as a selective inverse agonist of estrogen-related receptor α. Biomed Pharmacother. 2017;93:913–22. https://doi.org/10.1016/j.biopha.2017.07.016.

    Article  CAS  PubMed  Google Scholar 

  75. Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013;138(4):2099–107. https://doi.org/10.1038/jid.2014.371.

    Article  CAS  PubMed  Google Scholar 

  76. Wang J, Fang F, Huang Z, Wang Y, Wong C. Kaempferol is an estrogen-related receptor α and γ inverse agonist. FEBS Lett. 2009;583(4):643–7. https://doi.org/10.1016/j.febslet.2009.01.030.

    Article  CAS  PubMed  Google Scholar 

  77. Wang Y, Fang F, Wong CW. Troglitazone is an estrogen-related receptor α and γ inverse agonist. Biochem Pharmacol. 2010;80(1):80–5. https://doi.org/10.1016/j.bcp.2010.03.013.

    Article  CAS  PubMed  Google Scholar 

  78. Ghanbari F, Hebert-Losier A, Barry J, Poirier D, Giguere V, Mader S, Philip A. Isolation and functional characterization of a novel endogenous inverse agonist of estrogen related receptors (ERRs) from human pregnancy urine. J Steroid Biochem Mol Biol. 2019;191:105352. https://doi.org/10.1016/j.jsbmb.2019.04.001.

    Article  CAS  PubMed  Google Scholar 

  79. Kim J, Im CY, Yoo EK, Ma MJ, Kim SB, Hong E, Chin J, Hwang H, Lee S, Kim ND, et al. Identification of selective ERR inverse agonists. Molecules. 2016;21(80):1–16. https://doi.org/10.3390/molecules21010080.

    Article  CAS  Google Scholar 

  80. Tremblay GB, Bergeron D, Giguere V. 4-Hydroxytamoxifen is an isoform-specific inhibitor of orphan estrogen-receptor-related (ERR) nuclear receptors β and γ. Endocrinology. 2001;142(10):4572–5. https://doi.org/10.1210/endo.142.10.8528.

    Article  CAS  PubMed  Google Scholar 

  81. Patch RJ, Searle LL, Kim AJ, De D, Zhu X, Askari HB, O’Neill JC, Abad MC, Rentzeperis D, Liu J, et al. Identification of diaryl ether-based ligands for estrogen-related receptor α as potential antidiabetic agents. J Med Chem. 2011;54(3):788–808. https://doi.org/10.1021/jm101063h.

    Article  CAS  PubMed  Google Scholar 

  82. Xu S, Zhuang X, Pan X, Zhang Z, Duan L, Liu Y, Zhang L, Ren X, Ding K. 1-Phenyl-4-benzoyl-1H-1,2,3-triazoles as orally bioavailable transcriptional function suppressors of estrogen-related receptor α. J Med Chem. 2013;56(11):4631–40. https://doi.org/10.1021/jm4003928.

    Article  CAS  PubMed  Google Scholar 

  83. Patch RJ, Huang H, Patel S, Cheung W, Xu G, Zhao BP, Beauchamp DA, Rentzeperis D, Geisler JG, Askari HB, et al. Indazole-based ligands for estrogen-related receptor α as potential anti-diabetic agents. Eur J Med Chem. 2017;138:830–53. https://doi.org/10.1016/j.ejmech.2017.07.015.

    Article  CAS  PubMed  Google Scholar 

  84. Du Y, Song L, Zhang L, Ling H, Zhang Y, Chen H, Qi H, Shi X, Li Q. The discovery of novel, potent ERR-alpha inverse agonists for the treatment of triple negative breast cancer. Eur J Med Chem. 2017;136:457–67. https://doi.org/10.1016/j.ejmech.2017.04.050.

    Article  CAS  PubMed  Google Scholar 

  85. Zhao H, Lin C, Hu K, Wen X, Yuan H. Discovery of novel estrogen-related receptor α inverse agonists by virtual screening and biological evaluation. J Biomol Struct Dyn. 2019;37(6):1641–8. https://doi.org/10.1080/07391102.2018.1462736.

    Article  CAS  PubMed  Google Scholar 

  86. Lynch C, Zhao J, Sakamuru S, Zhang L, Huang R, Witt KL, Alex Merrick B, Teng CT, Xia M. Identification of compounds that inhibit estrogen-related receptor alpha signaling using high-throughput screening assays. Molecules. 2019;24(5):1–25. https://doi.org/10.3390/molecules24050841.

    Article  CAS  Google Scholar 

  87. Chao EYH, Collins JL, Gaillard S, Miller AB, Wang L, Orband-Miller LA, Nolte RT, McDonnell DP, Willson TM, Zuercher WJ. Structure-guided synthesis of tamoxifen analogs with improved selectivity for the orphan ERRγ. Bioorg Med Chem Lett. 2006;16(4):821–4. https://doi.org/10.1016/j.bmcl.2005.11.030.

    Article  CAS  PubMed  Google Scholar 

  88. Koo JY, Oh S, Cho SR, Koh M, Oh WK, Choi HS, Park SB. Total synthesis of eryvarin H and its derivatives and their biological activity as ERRγ inverse agonist. Org Biomol Chem. 2013;11(35):5782–6. https://doi.org/10.1039/c3ob41264d.

    Article  CAS  PubMed  Google Scholar 

  89. Yu DD, Huss JM, Li H, Forman BM. Identification of novel inverse agonists of estrogen-related receptors ERRγ and ERRβ. Bioorg Med Chem. 2017;25(5):1585–99. https://doi.org/10.1016/j.bmc.2017.01.019.

    Article  CAS  PubMed  Google Scholar 

  90. Singh TD, Song J, Kim J, Chin J, Ji HD, Lee JE, Lee SB, Yoon H, Yu JH, Kim SK, et al. A novel orally active inverse agonist of estrogen-related receptor gamma (ERRg), DN200434, a booster of NIS in anaplastic thyroid cancer. Clin Cancer Res. 2019;25(16):5069–81. https://doi.org/10.1158/1078-0432.CCR-18-3007.

    Article  CAS  PubMed  Google Scholar 

  91. Kim J, Song J, Ji HD, Yoo EK, Lee JE, Lee SB, Oh JM, Lee S, Hwang JS, Yoon H, et al. Discovery of potent, selective, and orally bioavailable estrogen-related receptor-γ inverse agonists to restore the sodium iodide symporter function in anaplastic thyroid cancer. J Med Chem. 2019;62(4):1837–58. https://doi.org/10.1021/acs.jmedchem.8b01296.

    Article  CAS  PubMed  Google Scholar 

  92. Suetsugi M, Su L, Karlsberg K, Yuan YC, Chen S. Flavone and isoflavone phytoestrogens are agonists of estrogen-related receptors. Mol Cancer Res. 2003;1(13):981–91.

    CAS  PubMed  Google Scholar 

  93. Hirvonen J, Rajalin AM, Wohlfahrt G, Adlercreutz H, Wähälä K, Aarnisalo P. Transcriptional activity of estrogen-related receptor γ (ERRγ) is stimulated by the phytoestrogen equol. J Steroid Biochem Mol Biol. 2011;123(1–2):46–57. https://doi.org/10.1016/j.jsbmb.2010.11.001.

    Article  CAS  PubMed  Google Scholar 

  94. Peng L, Gao X, Duan L, Ren X, Wu D, Ding K. Identification of pyrido[1,2-α]pyrimidine-4-ones as new molecules improving the transcriptional functions of estrogen-related receptor α. J Med Chem. 2011;54(21):7729–33. https://doi.org/10.1021/jm200976s.

    Article  CAS  PubMed  Google Scholar 

  95. Wei W, Schwaid AG, Wang X, Wang X, Chen S, Chu Q, Saghatelian A, Wan Y. Ligand activation of ERRα by cholesterol mediates statin and bisphosphonate effects. Cell Metab. 2016;23(3):479–91. https://doi.org/10.1016/j.cmet.2015.12.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zuercher WJ, Gaillard S, Orband-Miller LA, Chao EYH, Shearer BG, Jones DG, Miller AB, Collins JL, McDonnell DP, Willson TM. Identification and structure-activity relationship of phenolic acyl hydrazones as selective agonists for the estrogen-related orphan nuclear receptors ERRβ and ERRγ. J Med Chem. 2005;48(9):3107–9. https://doi.org/10.1021/jm050161j.

    Article  CAS  PubMed  Google Scholar 

  97. Yu DD, Forman BM. Identification of an agonist ligand for estrogen-related receptors ERRβ/γ. Bioorg Med Chem Lett. 2005;15(5):1311–3. https://doi.org/10.1016/j.bmcl.2005.01.025.

    Article  CAS  PubMed  Google Scholar 

  98. Kim Y, Koh M, Kim D-K, Choi H-S, Park SB. Efficient discovery of selective small molecule agonists of estrogen-related receptor gamma using combinatorial approach. J Comb Chem. 2009;11(5):928–37. https://doi.org/10.1021/cc900081j.

    Article  CAS  PubMed  Google Scholar 

  99. Shahien M, Elagawany M, Sitaula S, Goher SS, Burris SL, Sanders R, Avdagic A, Billon C, Hegazy L, Burris TP, et al. Modulation of estrogen-related receptors subtype selectivity: conversion of an ERRβ/γ selective agonist to ERRα/β/γ pan agonists. Bioorg Chem. 2020;102:104079. https://doi.org/10.1016/j.bioorg.2020.104079.

    Article  CAS  PubMed  Google Scholar 

  100. Takayanagi S, Tokunaga T, Liu X, Okada H, Matsushima A, Shimohigashi Y. Endocrine disruptor bisphenol a strongly binds to human estrogen-related receptor γ (ERRγ) with high constitutive activity. Toxicol Lett. 2006;167(2):95–105. https://doi.org/10.1016/j.toxlet.2006.08.012.

    Article  CAS  PubMed  Google Scholar 

  101. Matsushima A, Kakuta Y, Teramoto T, Koshiba T, Liu X, Okada H, Tokunaga T, Kawabata SI, Kimura M, Shimohigashi Y. Structural evidence for endocrine disruptor bisphenol a binding to human nuclear receptor ERRγ. J Biochem. 2007;142(4):517–24. https://doi.org/10.1093/jb/mvm158.

    Article  CAS  PubMed  Google Scholar 

  102. Liu X, Matsushima A, Okada H, Shimohigashi Y. Distinction of the binding modes for human nuclear receptor ERRγ between bisphenol A and 4-hydroxytamoxifen. J Biochem. 2010;148(2):247–54. https://doi.org/10.1093/jb/mvq056.

    Article  CAS  PubMed  Google Scholar 

  103. Okada H, Tokunaga T, Liu X, Takayanagi S, Matsushima A, Shimohigashi Y. Direct evidence revealing structural elements essential for the high binding ability of bisphenol a to human estrogen-related receptor-γ. Environ Health Perspect. 2008;116(1):32–8. https://doi.org/10.1289/ehp.10587.

    Article  CAS  PubMed  Google Scholar 

  104. Matsushima A, Teramoto T, Okada H, Liu X, Tokunaga T, Kakuta Y, Shimohigashi Y. ERRγ tethers strongly bisphenol a and 4-α-cumylphenol in an induced-fit manner. Biochem Biophys Res Commun. 2008;373(3):408–13. https://doi.org/10.1016/j.bbrc.2008.06.050.

    Article  CAS  PubMed  Google Scholar 

  105. Zhang Z, Sun L, Hu Y, Jiao J, Hu J. Inverse antagonist activities of parabens on human oestrogen-related receptor γ (ERRγ): in vitro and in silico studies. Toxicol Appl Pharmacol. 2013;270(1):16–22. https://doi.org/10.1016/j.taap.2013.03.030.

    Article  CAS  PubMed  Google Scholar 

  106. Lin H, Doebelin C, Patouret R, Garcia-Ordonez RD, Ra Chang M, Dharmarajan V, Bayona CR, Cameron MD, Griffin PR, Kamenecka TM. Design, synthesis, and evaluation of simple phenol amides as ERRγ agonists. Bioorg Med Chem Lett. 2018;28(8):1313–9. https://doi.org/10.1016/j.bmcl.2018.03.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Dr. Elgendy would like to thank the National Institute on Aging of the National Institutes of Health for financial support under Award Number R21AG065657.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahaa Elgendy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goher, S.S., Elgendy, B. (2021). Structure-Based Design of Estrogen-Related Receptors Modulators. In: Badr, M.Z. (eds) Nuclear Receptors. Springer, Cham. https://doi.org/10.1007/978-3-030-78315-0_5

Download citation

Publish with us

Policies and ethics