Skip to main content

Multifaceted Effects of Ligand on Nuclear Receptor Mobility

  • Chapter
  • First Online:
Nuclear Receptors

Abstract

Members of the nuclear receptor superfamily function as both intracellular receptors and transcription factors, modulating transcription of target genes in response to hormone. In the classical model of steroid hormone action, after crossing the plasma membrane hormone binds to cytoplasmic pools of receptor that are then rapidly translocated to the nucleus to facilitate gene transcription. Extensive studies since then have revealed a far more complicated story. The nuclear receptors are remarkably dynamic proteins that can undergo rapid nucleocytoplasmic shuttling in the presence or absence of hormone. They display a diversity of distributions within the cell, showing variation in transport mechanisms between the cytoplasmic and nuclear compartments and in their intranuclear dynamics. This chapter highlights key features of three main categories of intracellular localization into which the nuclear receptors can be roughly sorted: ligand-dependent nuclear accumulation, ligand-dependent intranuclear localization, and ligand-independent trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Govindan MV, Devic M, Green S, Gronemeyer H, Chambon P. Cloning of the human glucocorticoid receptor cDNA. Nucleic Acids Res. 1985;13(23):8293–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bunce CM, Campbell MJ. Nuclear receptors: current concepts and future challenges. Dordrecht, Netherlands\New York: Springer; 2010. xii, 457 p.p.

    Book  Google Scholar 

  3. Hollenberg SM, Weinberger C, Ong ES, Cerelli G, Oro A, Lebo R, et al. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature. 1985;318(6047):635–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Green S, Walter P, Kumar V, Krust A, Bornert JM, Argos P, et al. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature. 1986;320(6058):134–9.

    Article  CAS  PubMed  Google Scholar 

  5. Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM. The c-erb-A gene encodes a thyroid hormone receptor. Nature. 1986;324(6098):641–6.

    Article  CAS  PubMed  Google Scholar 

  6. Sap J, Munoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A, et al. The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature. 1986;324(6098):635–40.

    Article  CAS  PubMed  Google Scholar 

  7. Evans RM. The steroid and thyroid hormone receptor superfamily. Science. 1988;240(4854):889–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gustafsson JA. Historical overview of nuclear receptors. J Steroid Biochem Mol Biol. 2016;157:3–6.

    Article  CAS  PubMed  Google Scholar 

  9. Lazar MA. Maturing of the nuclear receptor family. J Clin Invest. 2017;127(4):1123–5.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Laudet V, Hanni C, Coll J, Catzeflis F, Stehelin D. Evolution of the nuclear receptor gene superfamily. EMBO J. 1992;11(3):1003–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weikum ER, Liu X, Ortlund EA. The nuclear receptor superfamily: a structural perspective. Protein Sci. 2018;27(11):1876–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mavinakere MS, Powers JM, Subramanian KS, Roggero VR, Allison LA. Multiple novel signals mediate thyroid hormone receptor nuclear import and export. J Biol Chem. 2012;287(37):31280–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun Z, Xu Y. Nuclear Receptor Coactivators (NCOAs) and Corepressors (NCORs) in the Brain. Endocrinology. 2020;161(8)

    Google Scholar 

  14. Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000;14(2):121–41.

    CAS  PubMed  Google Scholar 

  15. Surjit M, Ganti KP, Mukherji A, Ye T, Hua G, Metzger D, et al. Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell. 2011;145(2):224–41.

    Article  CAS  PubMed  Google Scholar 

  16. King WJ, Greene GL. Monoclonal antibodies localize oestrogen receptor in the nuclei of target cells. Nature. 1984;307(5953):745–7.

    Article  CAS  PubMed  Google Scholar 

  17. Perrot-Applanat M, Logeat F, Groyer-Picard MT, Milgrom E. Immunocytochemical study of mammalian progesterone receptor using monoclonal antibodies. Endocrinology. 1985;116(4):1473–84.

    Article  CAS  PubMed  Google Scholar 

  18. Perlman AJ, Stanley F, Samuels HH. Thyroid hormone nuclear receptor. Evidence for multimeric organization in chromatin. J Biol Chem. 1982;257(2):930–8.

    Article  CAS  PubMed  Google Scholar 

  19. Luo M, Puymirat J, Dussault JH. Immunocytochemical localization of nuclear 3,5,3′-triiodothyronine (L-T3) receptors in astrocyte cultures. Brain Res Dev Brain Res. 1989;46(1):131–6.

    Article  CAS  PubMed  Google Scholar 

  20. Macchia E, Nakai A, Janiga A, Sakurai A, Fisfalen ME, Gardner P, et al. Characterization of site-specific polyclonal antibodies to c-erbA peptides recognizing human thyroid hormone receptors α1, α2, and β and native 3,5,3′-triiodothyronine receptor, and study of tissue distribution of the antigen. Endocrinology. 1990;126(6):3232–9.

    Article  CAS  PubMed  Google Scholar 

  21. Welshons WV, Krummel BM, Gorski J. Nuclear localization of unoccupied receptors for glucocorticoids, estrogens, and progesterone in GH3 cells. Endocrinology. 1985;117(5):2140–7.

    Article  CAS  PubMed  Google Scholar 

  22. Bunn CF, Neidig JA, Freidinger KE, Stankiewicz TA, Weaver BS, McGrew J, et al. Nucleocytoplasmic shuttling of the thyroid hormone receptor α. Mol Endocrinol. 2001;15(4):512–33.

    CAS  PubMed  Google Scholar 

  23. Shank LC, Paschal BM. Nuclear transport of steroid hormone receptors. Crit Rev Eukaryot Gene Expr. 2005;15(1):49–73.

    Article  CAS  PubMed  Google Scholar 

  24. Maruvada P, Baumann CT, Hager GL, Yen PM. Dynamic shuttling and intranuclear mobility of nuclear hormone receptors. J Biol Chem. 2003;278(14):12425–32.

    Article  CAS  PubMed  Google Scholar 

  25. Guiochon-Mantel A, Lescop P, Christin-Maitre S, Loosfelt H, Perrot-Applanat M, Milgrom E. Nucleocytoplasmic shuttling of the progesterone receptor. EMBO J. 1991;10(12):3851–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Galigniana MD, Echeverria PC, Erlejman AG, Piwien-Pilipuk G. Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore. Nucleus. 2010;1(4):299–308.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Roggero VR, Zhang J, Parente LE, Doshi Y, Dziedzic RC, McGregor EL, et al. Nuclear import of the thyroid hormone receptor α1 is mediated by importin 7, importin β1, and adaptor importin α1. Mol Cell Endocrinol. 2016;419:185–97.

    Article  CAS  PubMed  Google Scholar 

  28. Subramanian KS, Dziedzic RC, Nelson HN, Stern ME, Roggero VR, Bondzi C, et al. Multiple exportins influence thyroid hormone receptor localization. Mol Cell Endocrinol. 2015;411:86–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin DH, Stuwe T, Schilbach S, Rundlet EJ, Perriches T, Mobbs G, et al. Architecture of the symmetric core of the nuclear pore. Science. 2016;352(6283):aaf1015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kosinski J, Mosalaganti S, von Appen A, Teimer R, DiGuilio AL, Wan W, et al. Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science. 2016;352(6283):363–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Timney BL, Raveh B, Mironska R, Trivedi JM, Kim SJ, Russel D, et al. Simple rules for passive diffusion through the nuclear pore complex. J Cell Biol. 2016;215(1):57–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cautain B, Hill R, de Pedro N, Link W. Components and regulation of nuclear transport processes. FEBS J. 2015;282(3):445–62.

    Article  CAS  PubMed  Google Scholar 

  33. Tran EJ, King MC, Corbett AH. Macromolecular transport between the nucleus and the cytoplasm: advances in mechanism and emerging links to disease. Biochim Biophys Acta. 2014;1843(11):2784–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Adams RL, Wente SR. Uncovering nuclear pore complexity with innovation. Cell. 2013;152(6):1218–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cook A, Bono F, Jinek M, Conti E. Structural biology of nucleocytoplasmic transport. Annu Rev Biochem. 2007;76(1):647–71.

    Article  CAS  PubMed  Google Scholar 

  36. Gorlich D, Kutay U. Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol. 1999;15:607–60.

    Article  CAS  PubMed  Google Scholar 

  37. Tetenbaum-Novatt J, Rout MP. The mechanism of nucleocytoplasmic transport through the nuclear pore complex. Cold Spring Harb Symp Quant Biol. 2010;75:567–84.

    Article  CAS  PubMed  Google Scholar 

  38. Stewart M. Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol. 2007;8(3):195–208.

    Article  CAS  PubMed  Google Scholar 

  39. Grossman E, Medalia O, Zwerger M. Functional architecture of the nuclear pore complex. Annu Rev Biophys. 2012;41:557–84.

    Article  CAS  PubMed  Google Scholar 

  40. Gorlich D, Mattaj IW. Nucleocytoplasmic transport. Science. 1996;271(5255):1513–8.

    Article  CAS  PubMed  Google Scholar 

  41. Soniat M, Chook YM. Nuclear localization signals for four distinct karyopherin-beta nuclear import systems. Biochem J. 2015;468(3):353–62.

    Article  CAS  PubMed  Google Scholar 

  42. Kimura M, Imamoto N. Biological significance of the importin-beta family-dependent nucleocytoplasmic transport pathways. Traffic. 2014;15(7):727–48.

    Article  CAS  PubMed  Google Scholar 

  43. Marfori M, Mynott A, Ellis JJ, Mehdi AM, Saunders NF, Curmi PM, et al. Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochim Biophys Acta. 2011;1813(9):1562–77.

    Article  CAS  PubMed  Google Scholar 

  44. Chook YM, Suel KE. Nuclear import by karyopherin-betas: recognition and inhibition. Biochim Biophys Acta. 2011;1813(9):1593–606.

    Article  CAS  PubMed  Google Scholar 

  45. Wente SR, Rout MP. The nuclear pore complex and nuclear transport. Cold Spring Harb Perspect Biol. 2010;2(10):a000562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pumroy RA, Cingolani G. Diversification of importin-α isoforms in cellular trafficking and disease states. Biochem J. 2015;466(1):13–28.

    Article  CAS  PubMed  Google Scholar 

  47. Guiochon-Mantel A, Loosfelt H, Lescop P, Sar S, Atger M, Perrot-Applanat M, et al. Mechanisms of nuclear localization of the progesterone receptor: evidence for interaction between monomers. Cell. 1989;57(7):1147–54.

    Article  CAS  PubMed  Google Scholar 

  48. Guiochon-Mantel A, Loosfelt H, Lescop P, Christin-Maitre S, Perrot-Applanat M, Milgrom E. Mechanisms of nuclear localization of the progesterone receptor. J Steroid Biochem Mol Biol. 1992;41(3–8):209–15.

    Article  CAS  PubMed  Google Scholar 

  49. Picard D, Kumar V, Chambon P, Yamamoto KR. Signal transduction by steroid hormones: nuclear localization is differentially regulated in estrogen and glucocorticoid receptors. Cell Regul. 1990;1(3):291–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ylikomi T, Bocquel MT, Berry M, Gronemeyer H, Chambon P. Cooperation of proto-signals for nuclear accumulation of estrogen and progesterone receptors. EMBO J. 1992;11(10):3681–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang J, Roggero VR, Allison LA. Nuclear import and export of the thyroid hormone receptor. Vitam Horm. 2018;106:45–66.

    Article  CAS  PubMed  Google Scholar 

  52. Cutress ML, Whitaker HC, Mills IG, Stewart M, Neal DE. Structural basis for the nuclear import of the human androgen receptor. J Cell Sci. 2008;121(Pt 7):957–68.

    Article  CAS  PubMed  Google Scholar 

  53. Jenster G, Trapman J, Brinkmann AO. Nuclear import of the human androgen receptor. Biochem J. 1993;293(Pt 3):761–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Walther RF, Atlas E, Carrigan A, Rouleau Y, Edgecombe A, Visentin L, et al. A serine/threonine-rich motif is one of three nuclear localization signals that determine unidirectional transport of the mineralocorticoid receptor to the nucleus. J Biol Chem. 2005;280(17):17549–61.

    Article  CAS  PubMed  Google Scholar 

  55. Piwien Pilipuk G, Vinson GP, Sanchez CG, Galigniana MD. Evidence for NL1-independent nuclear translocation of the mineralocorticoid receptor. Biochemistry. 2007;46(5):1389–97.

    Article  CAS  PubMed  Google Scholar 

  56. Ni L, Llewellyn R, Kesler CT, Kelley JB, Spencer A, Snow CJ, et al. Androgen induces a switch from cytoplasmic retention to nuclear import of the androgen receptor. Mol Cell Biol. 2013;33(24):4766–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gobinet J, Poujol N, Sultan C. Molecular action of androgens. Mol Cell Endocrinol. 2002;198(1–2):15–24.

    Article  CAS  PubMed  Google Scholar 

  58. Picard D, Yamamoto KR. Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J. 1987;6(11):3333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Freedman ND, Yamamoto KR. Importin 7 and importin α/importin β are nuclear import receptors for the glucocorticoid receptor. Mol Biol Cell. 2004;15(5):2276–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tao T, Lan J, Lukacs GL, Hache RJ, Kaplan F. Importin 13 regulates nuclear import of the glucocorticoid receptor in airway epithelial cells. Am J Respir Cell Mol Biol. 2006;35(6):668–80.

    Article  CAS  PubMed  Google Scholar 

  61. Prufer K, Racz A, Lin GC, Barsony J. Dimerization with retinoid X receptors promotes nuclear localization and subnuclear targeting of vitamin D receptors. J Biol Chem. 2000;275(52):41114–23.

    Article  CAS  PubMed  Google Scholar 

  62. Miyauchi Y, Michigami T, Sakaguchi N, Sekimoto T, Yoneda Y, Pike JW, et al. Importin 4 is responsible for ligand-independent nuclear translocation of vitamin D receptor. J Biol Chem. 2005;280(49):40901–8.

    Article  CAS  PubMed  Google Scholar 

  63. Yasmin R, Williams RM, Xu M, Noy N. Nuclear import of the retinoid X receptor, the vitamin D receptor, and their mutual heterodimer. J Biol Chem. 2005;280(48):40152–60.

    Article  CAS  PubMed  Google Scholar 

  64. Black BE, Holaska JM, Rastinejad F, Paschal BM. DNA binding domains in diverse nuclear receptors function as nuclear export signals. Curr Biol. 2001;11(22):1749–58.

    Article  CAS  PubMed  Google Scholar 

  65. Holaska JM, Black BE, Love DC, Hanover JA, Leszyk J, Paschal BM. Calreticulin is a receptor for nuclear export. J Cell Biol. 2001;152(1):127–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vandevyver S, Dejager L, Libert C. On the trail of the glucocorticoid receptor: into the nucleus and back. Traffic. 2012;13(3):364–74.

    Article  CAS  PubMed  Google Scholar 

  67. Tecalco-Cruz AC. Molecular pathways involved in the transport of nuclear receptors from the nucleus to cytoplasm. J Steroid Biochem Mol Biol. 2018;178:36–44.

    Article  CAS  PubMed  Google Scholar 

  68. Kutay U, Guttinger S. Leucine-rich nuclear-export signals: born to be weak. Trends Cell Biol. 2005;15(3):121–4.

    Article  CAS  PubMed  Google Scholar 

  69. Walther RF, Lamprecht C, Ridsdale A, Groulx I, Lee S, Lefebvre YA, et al. Nuclear export of the glucocorticoid receptor is accelerated by cell fusion-dependent release of calreticulin. J Biol Chem. 2003;278(39):37858–64.

    Article  CAS  PubMed  Google Scholar 

  70. Liu J, DeFranco DB. Chromatin recycling of glucocorticoid receptors: implications for multiple roles of heat shock protein 90. Mol Endocrinol. 1999;13(3):355–65.

    Article  CAS  PubMed  Google Scholar 

  71. Carrigan A, Walther RF, Salem HA, Wu D, Atlas E, Lefebvre YA, et al. An active nuclear retention signal in the glucocorticoid receptor functions as a strong inducer of transcriptional activation. J Biol Chem. 2007;282(15):10963–71.

    Article  CAS  PubMed  Google Scholar 

  72. Tanaka M, Nishi M, Morimoto M, Sugimoto T, Kawata M. Imaging analysis of mineralocorticoid receptor and importins in single living cells by using GFP color variants. Cell Tissue Res. 2005;320(3):447–53.

    Article  CAS  PubMed  Google Scholar 

  73. Saporita AJ, Zhang Q, Navai N, Dincer Z, Hahn J, Cai X, et al. Identification and characterization of a ligand-regulated nuclear export signal in androgen receptor. J Biol Chem. 2003;278(43):41998–2005.

    Article  CAS  PubMed  Google Scholar 

  74. Shank LC, Kelley JB, Gioeli D, Yang CS, Spencer A, Allison LA, et al. Activation of the DNA-dependent protein kinase stimulates nuclear export of the androgen receptor in vitro. J Biol Chem. 2008;283(16):10568–80.

    Article  CAS  PubMed  Google Scholar 

  75. Grespin ME, Bonamy GM, Roggero VR, Cameron NG, Adam LE, Atchison AP, et al. Thyroid hormone receptor α1 follows a cooperative CRM1/calreticulin-mediated nuclear export pathway. J Biol Chem. 2008;283(37):25576–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Klein IA, Boija A, Afeyan LK, Hawken SW, Fan M, Dall'Agnese A, et al. Partitioning of cancer therapeutics in nuclear condensates. Science. 2020;368(6497):1386–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Basu S, Mackowiak SD, Niskanen H, Knezevic D, Asimi V, Grosswendt S, et al. Unblending of transcriptional condensates in human repeat expansion disease. Cell. 2020;181(5):1062–79. e30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cho WK, Spille JH, Hecht M, Lee C, Li C, Grube V, et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science. 2018;361(6400):412–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chong S, Dugast-Darzacq C, Liu Z, Dong P, Dailey GM, Cattoglio C, et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science. 2018;361(6400)

    Google Scholar 

  80. Sabari BR, Dall'Agnese A, Boija A, Klein IA, Coffey EL, Shrinivas K, et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science. 2018;361(6400)

    Google Scholar 

  81. Swinstead EE, Paakinaho V, Presman DM, Hager GL. Pioneer factors and ATP-dependent chromatin remodeling factors interact dynamically: a new perspective: multiple transcription factors can effect chromatin pioneer functions through dynamic interactions with ATP-dependent chromatin remodeling factors. BioEssays. 2016;38(11):1150–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Voss TC, Schiltz RL, Sung MH, Yen PM, Stamatoyannopoulos JA, Biddie SC, et al. Dynamic exchange at regulatory elements during chromatin remodeling underlies assisted loading mechanism. Cell. 2011;146(4):544–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Di Bona M, Mancini MA, Mazza D, Vicidomini G, Diaspro A, Lanzano L. Measuring mobility in chromatin by intensity-sorted FCS. Biophys J. 2019;116(6):987–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Jankevics H, Prummer M, Izewska P, Pick H, Leufgen K, Vogel H. Diffusion-time distribution analysis reveals characteristic ligand-dependent interaction patterns of nuclear receptors in living cells. Biochemistry. 2005;44(35):11676–83.

    Article  CAS  PubMed  Google Scholar 

  85. Brazda P, Krieger J, Daniel B, Jonas D, Szekeres T, Langowski J, et al. Ligand binding shifts highly mobile retinoid X receptor to the chromatin-bound state in a coactivator-dependent manner, as revealed by single-cell imaging. Mol Cell Biol. 2014;34(7):1234–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Mueller F, Morisaki T, Mazza D, McNally JG. Minimizing the impact of photoswitching of fluorescent proteins on FRAP analysis. Biophys J. 2012;102(7):1656–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Groeneweg FL, van Royen ME, Fenz S, Keizer VI, Geverts B, Prins J, et al. Quantitation of glucocorticoid receptor DNA-binding dynamics by single-molecule microscopy and FRAP. PLoS One. 2014;9(3):e90532.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Kawata M, Matsuda K, Nishi M, Ogawa H, Ochiai I. Intracellular dynamics of steroid hormone receptor. Neurosci Res. 2001;40(3):197–203.

    Article  CAS  PubMed  Google Scholar 

  89. Farman N, Oblin ME, Lombes M, Delahaye F, Westphal HM, Bonvalet JP, et al. Immunolocalization of gluco- and mineralocorticoid receptors in rabbit kidney. Am J Phys. 1991;260(2 Pt 1):226–33.

    Article  Google Scholar 

  90. Fejes-Toth G, Pearce D, Naray-Fejes-Toth A. Subcellular localization of mineralocorticoid receptors in living cells: effects of receptor agonists and antagonists. Proc Natl Acad Sci U S A. 1998;95(6):2973–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Martins VR, Pratt WB, Terracio L, Hirst MA, Ringold GM, Housley PR. Demonstration by confocal microscopy that unliganded overexpressed glucocorticoid receptors are distributed in a nonrandom manner throughout all planes of the nucleus. Mol Endocrinol. 1991;5(2):217–25.

    Article  CAS  PubMed  Google Scholar 

  92. Sanchez ER, Hirst M, Scherrer LC, Tang HY, Welsh MJ, Harmon JM, et al. Hormone-free mouse glucocorticoid receptors overexpressed in Chinese hamster ovary cells are localized to the nucleus and are associated with both hsp70 and hsp90. J Biol Chem. 1990;265(33):20123–30.

    Article  CAS  PubMed  Google Scholar 

  93. Sar M, Lubahn DB, French FS, Wilson EM. Immunohistochemical localization of the androgen receptor in rat and human tissues. Endocrinology. 1990;127(6):3180–6.

    Article  CAS  PubMed  Google Scholar 

  94. Husmann DA, Wilson CM, McPhaul MJ, Tilley WD, Wilson JD. Antipeptide antibodies to two distinct regions of the androgen receptor localize the receptor protein to the nuclei of target cells in the rat and human prostate. Endocrinology. 1990;126(5):2359–68.

    Article  CAS  PubMed  Google Scholar 

  95. Lim CS, Baumann CT, Htun H, Xian W, Irie M, Smith CL, et al. Differential localization and activity of the A- and B-forms of the human progesterone receptor using green fluorescent protein chimeras. Mol Endocrinol. 1999;13(3):366–75.

    Article  CAS  PubMed  Google Scholar 

  96. Li H, Fidler ML, Lim CS. Effect of initial subcellular localization of progesterone receptor on import kinetics and transcriptional activity. Mol Pharm. 2005;2(6):509–18.

    Article  CAS  PubMed  Google Scholar 

  97. Qiu M, Olsen A, Faivre E, Horwitz KB, Lange CA. Mitogen-activated protein kinase regulates nuclear association of human progesterone receptors. Mol Endocrinol. 2003;17(4):628–42.

    Article  CAS  PubMed  Google Scholar 

  98. Tyagi RK, Amazit L, Lescop P, Milgrom E, Guiochon-Mantel A. Mechanisms of progesterone receptor export from nuclei: role of nuclear localization signal, nuclear export signal, and ran guanosine triphosphate. Mol Endocrinol. 1998;12(11):1684–95.

    Article  CAS  PubMed  Google Scholar 

  99. Leslie KK, Stein MP, Kumar NS, Dai D, Stephens J, Wandinger-Ness A, et al. Progesterone receptor isoform identification and subcellular localization in endometrial cancer. Gynecol Oncol. 2005;96(1):32–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. McNally JG, Muller WG, Walker D, Wolford R, Hager GL. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science. 2000;287(5456):1262–5.

    Article  CAS  PubMed  Google Scholar 

  101. Kassel O, Herrlich P. Crosstalk between the glucocorticoid receptor and other transcription factors: molecular aspects. Mol Cell Endocrinol. 2007;275(1–2):13–29.

    Article  CAS  PubMed  Google Scholar 

  102. Necela BM, Cidlowski JA. Mechanisms of glucocorticoid receptor action in noninflammatory and inflammatory cells. Proc Am Thorac Soc. 2004;1(3):239–46.

    Article  CAS  PubMed  Google Scholar 

  103. Madan AP, DeFranco DB. Bidirectional transport of glucocorticoid receptors across the nuclear envelope. Proc Natl Acad Sci U S A. 1993;90(8):3588–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cheung J, Smith DF. Molecular chaperone interactions with steroid receptors: an update. Mol Endocrinol. 2000;14(7):939–46.

    Article  CAS  PubMed  Google Scholar 

  105. Morishima Y, Murphy PJ, Li DP, Sanchez ER, Pratt WB. Stepwise assembly of a glucocorticoid receptor.hsp90 heterocomplex resolves two sequential ATP-dependent events involving first hsp70 and then hsp90 in opening of the steroid binding pocket. J Biol Chem. 2000;275(24):18054–60.

    Article  CAS  PubMed  Google Scholar 

  106. Schopf FH, Biebl MM, Buchner J. The HSP90 chaperone machinery. Nat Rev Mol Cell Biol. 2017;18(6):345–60.

    Article  CAS  PubMed  Google Scholar 

  107. Presman DM, Alvarez LD, Levi V, Eduardo S, Digman MA, Marti MA, et al. Insights on glucocorticoid receptor activity modulation through the binding of rigid steroids. PLoS One. 2010;5(10):e13279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Atanasov AG, Dzyakanchuk AA, Schweizer RA, Nashev LG, Maurer EM, Odermatt A. Coffee inhibits the reactivation of glucocorticoids by 11beta-hydroxysteroid dehydrogenase type 1: a glucocorticoid connection in the anti-diabetic action of coffee? FEBS Lett. 2006;580(17):4081–5.

    Article  CAS  PubMed  Google Scholar 

  109. van Dam RM, Hu FB. Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA. 2005;294(1):97–104.

    Article  PubMed  Google Scholar 

  110. Harrell JM, Murphy PJ, Morishima Y, Chen H, Mansfield JF, Galigniana MD, et al. Evidence for glucocorticoid receptor transport on microtubules by dynein. J Biol Chem. 2004;279(52):54647–54.

    Article  CAS  PubMed  Google Scholar 

  111. Galigniana MD, Scruggs JL, Herrington J, Welsh MJ, Carter-Su C, Housley PR, et al. Heat shock protein 90-dependent (geldanamycin-inhibited) movement of the glucocorticoid receptor through the cytoplasm to the nucleus requires intact cytoskeleton. Mol Endocrinol. 1998;12(12):1903–13.

    Article  CAS  PubMed  Google Scholar 

  112. Galigniana MD, Radanyi C, Renoir JM, Housley PR, Pratt WB. Evidence that the peptidylprolyl isomerase domain of the hsp90-binding immunophilin FKBP52 is involved in both dynein interaction and glucocorticoid receptor movement to the nucleus. J Biol Chem. 2001;276(18):14884–9.

    Article  CAS  PubMed  Google Scholar 

  113. Savory JG, Hsu B, Laquian IR, Giffin W, Reich T, Hache RJ, et al. Discrimination between NL1- and NL2-mediated nuclear localization of the glucocorticoid receptor. Mol Cell Biol. 1999;19(2):1025–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hache RJ, Tse R, Reich T, Savory JG, Lefebvre YA. Nucleocytoplasmic trafficking of steroid-free glucocorticoid receptor. J Biol Chem. 1999;274(3):1432–9.

    Article  CAS  PubMed  Google Scholar 

  115. Schaaf MJ, Lewis-Tuffin LJ, Cidlowski JA. Ligand-selective targeting of the glucocorticoid receptor to nuclear subdomains is associated with decreased receptor mobility. Mol Endocrinol. 2005;19(6):1501–15.

    Article  CAS  PubMed  Google Scholar 

  116. Schaaf MJ, Cidlowski JA. Molecular determinants of glucocorticoid receptor mobility in living cells: the importance of ligand affinity. Mol Cell Biol. 2003;23(6):1922–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Stortz M, Presman DM, Bruno L, Annibale P, Dansey MV, Burton G, et al. Mapping the dynamics of the glucocorticoid receptor within the nuclear landscape. Sci Rep. 2017;7(1):6219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Morisaki T, Muller WG, Golob N, Mazza D, McNally JG. Single-molecule analysis of transcription factor binding at transcription sites in live cells. Nat Commun. 2014;5:4456.

    Article  CAS  PubMed  Google Scholar 

  119. Presman DM, Ball DA, Paakinaho V, Grimm JB, Lavis LD, Karpova TS, et al. Quantifying transcription factor binding dynamics at the single-molecule level in live cells. Methods. 2017;123:76–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Paakinaho V, Presman DM, Ball DA, Johnson TA, Schiltz RL, Levitt P, et al. Single-molecule analysis of steroid receptor and cofactor action in living cells. Nat Commun. 2017;8:15896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Keizer VIP, Coppola S, Houtsmuller AB, Geverts B, van Royen ME, Schmidt T, et al. Repetitive switching between DNA-binding modes enables target finding by the glucocorticoid receptor. J Cell Sci. 2019;132(5)

    Google Scholar 

  122. Fuller PJ, Yang J, Young MJ. Mechanisms of mineralocorticoid receptor signaling. Vitam Horm. 2019;109:37–68.

    Article  CAS  PubMed  Google Scholar 

  123. Huyet J, Pinon GM, Fay MR, Rafestin-Oblin ME, Fagart J. Structural determinants of ligand binding to the mineralocorticoid receptor. Mol Cell Endocrinol. 2012;350(2):187–95.

    Article  CAS  PubMed  Google Scholar 

  124. Jimenez-Canino R, Lorenzo-Diaz F, Jaisser F, Farman N, Giraldez T, Alvarez de la Rosa D. Histone deacetylase 6-controlled Hsp90 acetylation significantly alters mineralocorticoid receptor subcellular dynamics but not its transcriptional activity. Endocrinology. 2016;157(6):2515–32.

    Article  CAS  PubMed  Google Scholar 

  125. Grossmann C, Ruhs S, Langenbruch L, Mildenberger S, Stratz N, Schumann K, et al. Nuclear shuttling precedes dimerization in mineralocorticoid receptor signaling. Chem Biol. 2012;19(6):742–51.

    Article  CAS  PubMed  Google Scholar 

  126. Nishi M, Ogawa H, Ito T, Matsuda KI, Kawata M. Dynamic changes in subcellular localization of mineralocorticoid receptor in living cells: in comparison with glucocorticoid receptor using dual-color labeling with green fluorescent protein spectral variants. Mol Endocrinol. 2001;15(7):1077–92.

    Article  CAS  PubMed  Google Scholar 

  127. Deroo BJ, Rentsch C, Sampath S, Young J, DeFranco DB, Archer TK. Proteasomal inhibition enhances glucocorticoid receptor transactivation and alters its subnuclear trafficking. Mol Cell Biol. 2002;22(12):4113–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lonard DM, Nawaz Z, Smith CL, O'Malley BW. The 26S proteasome is required for estrogen receptor-α and coactivator turnover and for efficient estrogen receptor-alpha transactivation. Mol Cell. 2000;5(6):939–48.

    Article  CAS  PubMed  Google Scholar 

  129. Stavreva DA, Muller WG, Hager GL, Smith CL, McNally JG. Rapid glucocorticoid receptor exchange at a promoter is coupled to transcription and regulated by chaperones and proteasomes. Mol Cell Biol. 2004;24(7):2682–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Stenoien DL, Nye AC, Mancini MG, Patel K, Dutertre M, O'Malley BW, et al. Ligand-mediated assembly and real-time cellular dynamics of estrogen receptor α-coactivator complexes in living cells. Mol Cell Biol. 2001;21(13):4404–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Darshan MS, Loftus MS, Thadani-Mulero M, Levy BP, Escuin D, Zhou XK, et al. Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res. 2011;71(18):6019–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chiu CL, Patsch K, Cutrale F, Soundararajan A, Agus DB, Fraser SE, et al. Intracellular kinetics of the androgen receptor shown by multimodal Image Correlation Spectroscopy (mICS). Sci Rep. 2016;6:22435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tomura A, Goto K, Morinaga H, Nomura M, Okabe T, Yanase T, et al. The subnuclear three-dimensional image analysis of androgen receptor fused to green fluorescence protein. J Biol Chem. 2001;276(30):28395–283401.

    Article  CAS  PubMed  Google Scholar 

  134. Saitoh M, Takayanagi R, Goto K, Fukamizu A, Tomura A, Yanase T, et al. The presence of both the amino- and carboxyl-terminal domains in the AR is essential for the completion of a transcriptionally active form with coactivators and intranuclear compartmentalization common to the steroid hormone receptors: a three-dimensional imaging study. Mol Endocrinol. 2002;16(4):694–706.

    Article  CAS  PubMed  Google Scholar 

  135. Kawate H, Wu Y, Ohnaka K, Tao RH, Nakamura K, Okabe T, et al. Impaired nuclear translocation, nuclear matrix targeting, and intranuclear mobility of mutant androgen receptors carrying amino acid substitutions in the deoxyribonucleic acid-binding domain derived from androgen insensitivity syndrome patients. J Clin Endocrinol Metab. 2005;90(11):6162–9.

    Article  CAS  PubMed  Google Scholar 

  136. Marcelli M, Stenoien DL, Szafran AT, Simeoni S, Agoulnik IU, Weigel NL, et al. Quantifying effects of ligands on androgen receptor nuclear translocation, intranuclear dynamics, and solubility. J Cell Biochem. 2006;98(4):770–88.

    Article  CAS  PubMed  Google Scholar 

  137. Farooq A. Structural and functional diversity of estrogen receptor ligands. Curr Top Med Chem. 2015;15(14):1372–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kang KI, Devin J, Cadepond F, Jibard N, Guiochon-Mantel A, Baulieu EE, et al. In vivo functional protein-protein interaction: nuclear targeted hsp90 shifts cytoplasmic steroid receptor mutants into the nucleus. Proc Natl Acad Sci U S A. 1994;91(1):340–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Razandi M, Pedram A, Merchenthaler I, Greene GL, Levin ER. Plasma membrane estrogen receptors exist and functions as dimers. Mol Endocrinol. 2004;18(12):2854–65.

    Article  CAS  PubMed  Google Scholar 

  140. Acconcia F, Ascenzi P, Fabozzi G, Visca P, Marino M. S-palmitoylation modulates human estrogen receptor-alpha functions. Biochem Biophys Res Commun. 2004;316(3):878–83.

    Article  CAS  PubMed  Google Scholar 

  141. Matsuda KI, Hashimoto T, Kawata M. Intranuclear mobility of estrogen receptor: implication for transcriptional regulation. Acta Histochem Cytochem. 2018;51(4):129–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kocanova S, Mazaheri M, Caze-Subra S, Bystricky K. Ligands specify estrogen receptor α nuclear localization and degradation. BMC Cell Biol. 2010;11:98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Htun H, Holth LT, Walker D, Davie JR, Hager GL. Direct visualization of the human estrogen receptor α reveals a role for ligand in the nuclear distribution of the receptor. Mol Biol Cell. 1999;10(2):471–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Collins F, Itani N, Esnal-Zufiaurre A, Gibson DA, Fitzgerald C, Saunders PTK. The ERbeta5 splice variant increases oestrogen responsiveness of ERα+ Ishikawa cells. Endocr Relat Cancer. 2020;27(2):55–66.

    Article  CAS  PubMed  Google Scholar 

  145. Guan J, Zhou W, Hafner M, Blake RA, Chalouni C, Chen IP, et al. Therapeutic ligands antagonize estrogen receptor function by impairing its mobility. Cell. 2019;178(4):949–63 e18.

    Article  CAS  PubMed  Google Scholar 

  146. Femia MR, Evans RM, Zhang J, Sun X, Lebegue CJ, Roggero VR, et al. Mediator subunit MED1 modulates intranuclear dynamics of the thyroid hormone receptor. J Cell Biochem. 2020;121(4):2909–26.

    Article  CAS  PubMed  Google Scholar 

  147. Jusu S, Presley JF, Kremer R. Phosphorylation of human retinoid X receptor α at serine 260 impairs its subcellular localization, receptor interaction, nuclear mobility, and 1α,25-dihydroxyvitamin D3-dependent DNA binding in ras-transformed keratinocytes. J Biol Chem. 2017;292(4):1490–509.

    Article  CAS  PubMed  Google Scholar 

  148. Anyetei-Anum CS, Evans RM, Back AM, Roggero VR, Allison LA. Acetylation modulates thyroid hormone receptor intracellular localization and intranuclear mobility. Mol Cell Endocrinol. 2019;495:110509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dalman FC, Koenig RJ, Perdew GH, Massa E, Pratt WB. In contrast to the glucocorticoid receptor, the thyroid hormone receptor is translated in the DNA binding state and is not associated with hsp90. J Biol Chem. 1990;265(7):3615–8.

    Article  CAS  PubMed  Google Scholar 

  150. Dalman FC, Sturzenbecker LJ, Levin AA, Lucas DA, Perdew GH, Petkovitch M, et al. Retinoic acid receptor belongs to a subclass of nuclear receptors that do not form "docking" complexes with hsp90. Biochemistry. 1991;30(22):5605–8.

    Article  CAS  PubMed  Google Scholar 

  151. Barsony J, Renyi I, McKoy W. Subcellular distribution of normal and mutant vitamin D receptors in living cells. Studies with a novel fluorescent ligand. J Biol Chem. 1997;272(9):5774–82.

    Article  CAS  PubMed  Google Scholar 

  152. Kamimura S, Gallieni M, Zhong M, Beron W, Slatopolsky E, Dusso A. Microtubules mediate cellular 25-hydroxyvitamin D3 trafficking and the genomic response to 1,25-dihydroxyvitamin D3 in normal human monocytes. J Biol Chem. 1995;270(38):22160–6.

    Article  CAS  PubMed  Google Scholar 

  153. Dinda S, Sanchez A, Moudgil V. Estrogen-like effects of thyroid hormone on the regulation of tumor suppressor proteins, p53 and retinoblastoma, in breast cancer cells. Oncogene. 2002;21(5):761–8.

    Article  CAS  PubMed  Google Scholar 

  154. Puzianowska-Kuznicka M, Pietrzak M, Turowska O, Nauman A. Thyroid hormones and their receptors in the regulation of cell proliferation. Acta Biochim Pol. 2006;53(4):641–50.

    Article  CAS  PubMed  Google Scholar 

  155. Qi JS, Yuan Y, Desai-Yajnik V, Samuels HH. Regulation of the mdm2 oncogene by thyroid hormone receptor. Mol Cell Biol. 1999;19(1):864–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94(2):355–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Flamant F, Gauthier K. Thyroid hormone receptors: the challenge of elucidating isotype-specific functions and cell-specific response. Biochim Biophys Acta. 2013;1830(7):3900–7.

    Article  CAS  PubMed  Google Scholar 

  158. Pascual A, Aranda A. Thyroid hormone receptors, cell growth and differentiation. Biochim Biophys Acta. 2013;1830(7):3908–16.

    Article  CAS  PubMed  Google Scholar 

  159. Preau L, Fini JB, Morvan-Dubois G, Demeneix B. Thyroid hormone signaling during early neurogenesis and its significance as a vulnerable window for endocrine disruption. Biochim Biophys Acta. 2015;1849(2):112–21.

    Article  CAS  PubMed  Google Scholar 

  160. Tata JR. The road to nuclear receptors of thyroid hormone. Biochim Biophys Acta. 2013;1830(7):3860–6.

    Article  CAS  PubMed  Google Scholar 

  161. Wojcicka A, Bassett JH, Williams GR. Mechanisms of action of thyroid hormones in the skeleton. Biochim Biophys Acta. 2013;1830(7):3979–86.

    Article  CAS  PubMed  Google Scholar 

  162. Contreras-Jurado C, Garcia-Serrano L, Martinez-Fernandez M, Ruiz-Llorente L, Paramio JM, Aranda A. Impaired hair growth and wound healing in mice lacking thyroid hormone receptors. PLoS One. 2014;9(9):e108137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Chen CY, Tsai MM, Chi HC, Lin KH. Biological significance of a thyroid hormone-regulated secretome. Biochim Biophys Acta. 2013;1834(11):2271–84.

    Article  CAS  PubMed  Google Scholar 

  164. Kim WG, Cheng SY. Thyroid hormone receptors and cancer. Biochim Biophys Acta. 2013;1830(7):3928–36.

    Article  CAS  PubMed  Google Scholar 

  165. Mendoza A, Hollenberg AN. New insights into thyroid hormone action. Pharmacol Ther. 2017;173:135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mondal S, Raja K, Schweizer U, Mugesh G. Chemistry and biology in the biosynthesis and action of thyroid hormones. Angew Chem Int Ed Engl. 2016;55(27):7606–30.

    Article  CAS  PubMed  Google Scholar 

  167. van der Spek AH, Fliers E, Boelen A. Thyroid hormone metabolism in innate immune cells. J Endocrinol. 2017;232(2):67–81.

    Article  Google Scholar 

  168. Laudet V, Gronemeyer H. The nuclear receptor: factsbook. San Diego: Academic Press; 2002. xvii, 462 p.p.

    Google Scholar 

  169. Vella KR, Hollenberg AN. The actions of thyroid hormone signaling in the nucleus. Mol Cell Endocrinol. 2017;458:127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Skah S, Uchuya-Castillo J, Sirakov M, Plateroti M. The thyroid hormone nuclear receptors and the Wnt/beta-catenin pathway: an intriguing liaison. Dev Biol. 2017;422(2):71–82.

    Article  CAS  PubMed  Google Scholar 

  171. Bernal J. Thyroid hormone regulated genes in cerebral cortex development. J Endocrinol. 2017;232(2):83–97.

    Article  Google Scholar 

  172. Wrutniak-Cabello C, Casas F, Cabello G. Mitochondrial T3 receptor and targets. Mol Cell Endocrinol. 2017;458:112–20.

    Article  CAS  PubMed  Google Scholar 

  173. Ayers S, Switnicki MP, Angajala A, Lammel J, Arumanayagam AS, Webb P. Genome-wide binding patterns of thyroid hormone receptor beta. PLoS One. 2014;9(2):e81186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Bernal J, Morte B. Thyroid hormone receptor activity in the absence of ligand: physiological and developmental implications. Biochim Biophys Acta. 2013;1830(7):3893–9.

    Article  CAS  PubMed  Google Scholar 

  175. Brent GA. Mechanisms of thyroid hormone action. J Clin Invest. 2012;122(9):3035–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Diallo EM, Wilhelm KG Jr, Thompson DL, Koenig RJ. Variable RXR requirements for thyroid hormone responsiveness of endogenous genes. Mol Cell Endocrinol. 2007;264(1–2):149–56.

    Article  CAS  PubMed  Google Scholar 

  177. Flamant F. Futures challenges in thyroid hormone sgnaling research. Front Endocrinol (Lausanne). 2016;7:–58.

    Google Scholar 

  178. Mendoza A, Astapova I, Shimizu H, Gallop MR, Al-Sowaimel L, MacGowan SMD, et al. NCoR1-independent mechanism plays a role in the action of the unliganded thyroid hormone receptor. Proc Natl Acad Sci U S A. 2017;114(40):8458–67.

    Article  CAS  Google Scholar 

  179. Oberoi J, Fairall L, Watson PJ, Yang JC, Czimmerer Z, Kampmann T, et al. Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery. Nat Struct Mol Biol. 2011;18(2):177–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Xu L, Glass CK, Rosenfeld MG. Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev. 1999;9(2):140–7.

    Article  CAS  PubMed  Google Scholar 

  181. Fondell JD. The Mediator complex in thyroid hormone receptor action. Biochim Biophys Acta. 2013;1830(7):3867–75.

    Article  CAS  PubMed  Google Scholar 

  182. Poss ZC, Ebmeier CC, Taatjes DJ. The Mediator complex and transcription regulation. Crit Rev Biochem Mol Biol. 2013;48(6):575–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Napoli C, Sessa M, Infante T, Casamassimi A. Unraveling framework of the ancestral Mediator complex in human diseases. Biochimie. 2012;94(3):579–87.

    Article  CAS  PubMed  Google Scholar 

  184. Dasgupta S, O'Malley BW. Transcriptional coregulators: emerging roles of SRC family of coactivators in disease pathology. J Mol Endocrinol. 2014;53(2):47–59.

    Article  CAS  Google Scholar 

  185. Soriano FX, Leveille F, Papadia S, Bell KF, Puddifoot C, Hardingham GE. Neuronal activity controls the antagonistic balance between peroxisome proliferator-activated receptor-gamma coactivator-1α and silencing mediator of retinoic acid and thyroid hormone receptors in regulating antioxidant defenses. Antioxid Redox Signal. 2011;14(8):1425–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. McKenna NJ, Lanz RB, O'Malley BW. Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev. 1999;20(3):321–44.

    CAS  PubMed  Google Scholar 

  187. Grontved L, Waterfall JJ, Kim DW, Baek S, Sung MH, Zhao L, et al. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling. Nat Commun. 2015;6:7048.

    Article  PubMed  CAS  Google Scholar 

  188. Vella KR, Ramadoss P, Costa ESRH, Astapova I, Ye FD, Holtz KA, et al. Thyroid hormone signaling in vivo requires a balance between coactivators and corepressors. Mol Cell Biol. 2014;34(9):1564–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Astapova I, Hollenberg AN. The in vivo role of nuclear receptor corepressors in thyroid hormone action. Biochim Biophys Acta. 2013;1830(7):3876–81.

    Article  CAS  PubMed  Google Scholar 

  190. Shimizu H, Astapova I, Ye F, Bilban M, Cohen RN, Hollenberg AN. NCoR1 and SMRT play unique roles in thyroid hormone action in vivo. Mol Cell Biol. 2015;35(3):555–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Astapova I, Vella KR, Ramadoss P, Holtz KA, Rodwin BA, Liao XH, et al. The nuclear receptor corepressor (NCoR) controls thyroid hormone sensitivity and the set point of the hypothalamic-pituitary-thyroid axis. Mol Endocrinol. 2011;25(2):212–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Chatonnet F, Guyot R, Benoit G, Flamant F. Genome-wide analysis of thyroid hormone receptors shared and specific functions in neural cells. Proc Natl Acad Sci U S A. 2013;110(8):766–75.

    Article  Google Scholar 

  193. Ramadoss P, Abraham BJ, Tsai L, Zhou Y, Costa-e-Sousa RH, Ye F, et al. Novel mechanism of positive versus negative regulation by thyroid hormone receptor beta1 (TRbeta1) identified by genome-wide profiling of binding sites in mouse liver. J Biol Chem. 2014;289(3):1313–28.

    Article  CAS  PubMed  Google Scholar 

  194. Baumann CT, Maruvada P, Hager GL, Yen PM. Nuclear cytoplasmic shuttling by thyroid hormone receptors. J Biol Chem. 2001;276(14):11237–45.

    Article  CAS  PubMed  Google Scholar 

  195. Zhu XG, Hanover JA, Hager GL, Cheng SY. Hormone-induced translocation of thyroid hormone receptors in living cells visualized using a receptor green fluorescent protein chimera. J Biol Chem. 1998;273(42):27058–63.

    Article  CAS  PubMed  Google Scholar 

  196. Brazda P, Szekeres T, Bravics B, Toth K, Vamosi G, Nagy L. Live-cell fluorescence correlation spectroscopy dissects the role of coregulator exchange and chromatin binding in retinoic acid receptor mobility. J Cell Sci. 2011;124(Pt 21):3631–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Reho B, Lau L, Mocsar G, Muller G, Fadel L, Brazda P, et al. Simultaneous mapping of molecular proximity and comobility reveals agonist-enhanced dimerization and DNA binding of nuclear receptors. Anal Chem. 2020;92(2):2207–15.

    Article  CAS  PubMed  Google Scholar 

  198. Haussler MR, Whitfield GK, Kaneko I, Haussler CA, Hsieh D, Hsieh JC, et al. Molecular mechanisms of vitamin D action. Calcif Tissue Int. 2013;92(2):77–98.

    Article  CAS  PubMed  Google Scholar 

  199. Klopot A, Hance KW, Peleg S, Barsony J, Fleet JC. Nucleo-cytoplasmic cycling of the vitamin D receptor in the enterocyte-like cell line, Caco-2. J Cell Biochem. 2007;100(3):617–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Prufer K, Barsony J. Retinoid X receptor dominates the nuclear import and export of the unliganded vitamin D receptor. Mol Endocrinol. 2002;16(8):1738–51.

    Article  CAS  PubMed  Google Scholar 

  201. Fadel L, Reho B, Volko J, Bojcsuk D, Kolostyak Z, Nagy G, et al. Agonist binding directs dynamic competition among nuclear receptors for heterodimerization with retinoid X receptor. J Biol Chem. 2020;295(29):10045–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Tenbaum S, Baniahmad A. Nuclear receptors: structure, function and involvement in disease. Int J Biochem Cell Biol. 1997;29(12):1325–41.

    Article  CAS  PubMed  Google Scholar 

  203. Leemans M, Couderq S, Demeneix B, Fini JB. Pesticides with potential thyroid hormone-disrupting effects: a review of recent data. Front Endocrinol (Lausanne). 2019;10:743.

    Article  Google Scholar 

  204. Jans DA, Martin AJ, Wagstaff KM. Inhibitors of nuclear transport. Curr Opin Cell Biol. 2019;58:50–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the Allison lab is supported in part by Grant 2R15DK058028 from the National Institutes of Health to L.A.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizabeth A. Allison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allison, L.A., Roggero, V.R. (2021). Multifaceted Effects of Ligand on Nuclear Receptor Mobility. In: Badr, M.Z. (eds) Nuclear Receptors. Springer, Cham. https://doi.org/10.1007/978-3-030-78315-0_3

Download citation

Publish with us

Policies and ethics