Skip to main content

Use of Nanotechnology to Improve 15d-PGJ2 Immunomodulatory Activities

  • Chapter
  • First Online:
Nuclear Receptors

Abstract

A growing body of evidence demonstrates that 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) which is an endogenous ligand of peroxisome proliferator-activated receptor gamma (PPAR-γ) has multiple physiological properties. It has been demonstrated the efficacy at low doses even lower when combined with nanotechnology, as a promising therapeutic approach as immunoresolvents and some of them present long-lasting anti-inflammatory effects. In this chapter, we focus on how 15d-PGJ2 is involved in the resolution of inflammatory responses and as potential analgesic molecule. Importantly, we will present evidences that nanotechnology (nanocarriers) is a helpful tool to improve its action and bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdalla HB, Jain AK, Napimoga MH, Clemente-Napimoga JT, Gill HS. Microneedles coated with tramadol exhibit antinociceptive effect in a rat model of temporomandibular hypernociception. J Pharmacol Exp Ther. 2019;370(3):834–42. https://doi.org/10.1124/jpet.119.256750.

    Article  CAS  PubMed  Google Scholar 

  2. Abdalla HB, Napimoga MH, Lopes AH, Maganin AGM, Cunha TM, Van Dyke TE, Clemente-Napimoga JT. Activation of PPAR-γ induces macrophage polarization and reduces neutrophil migration mediated by heme oxygenase 1. Int Immunopharmacol. 2020;84:106565. https://doi.org/10.1016/j.intimp.2020.106565.

    Article  CAS  PubMed  Google Scholar 

  3. Abdalla HB, Napimoga MH, Macedo CG, Bonfante R, De Araujo DR, de Mello NFS, Carvalho LB, Fraceto LF, Clemente-Napimoga JT. Poloxamer micellar system for intra-articular injection of 15-deoxy- Δ12,14-prostaglandin J 2 with improved bioavailability and anti-inflammatory properties in the temporomandibular joint of rats. Int J Pharm. 2020;28:119383. https://doi.org/10.1016/j.ijpharm.2020.119383.

    Article  CAS  Google Scholar 

  4. Abis G, Charles RL, Kopec J, Yue WW, Atkinson RA, Bui TTT, Lynham S, Popova S, Sun YB, Fraternali F, Eaton P, Conte MR. 15-deoxy-Δ 12,14-prostaglandin J 2 inhibits human soluble epoxide hydrolase by a dual orthosteric and allosteric mechanism. Commun Biol. 2019;2:188. https://doi.org/10.1038/s42003-019-0426-2.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Andersson DA, Gentry C, Moss S, Bevan S. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci. 2008;28(10):2485–94. https://doi.org/10.1523/JNEUROSCI.5369-07.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Antel JP, Becher B, Ludwin SK, Prat A, Quintana FJ. Glial cells as regulators of neuroimmune interactions in the central nervous system. J Immunol. 2020;204(2):251–5. https://doi.org/10.4049/jimmunol.1900908.

    Article  CAS  PubMed  Google Scholar 

  7. Battaglia L, Gallarate M. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Deliv. 2012;9(5):497–508. https://doi.org/10.1517/17425247.2012.673278.

    Article  CAS  PubMed  Google Scholar 

  8. Bell-Parikh LC, Ide T, Lawson JA, McNamara P, Reilly M, FitzGerald GA. Biosynthesis of 15-deoxy-delta12,14–PGJ2 and the ligation of PPARgamma. J Clin Invest. 2003;112:945–55. https://doi.org/10.1172/JCI18012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bonfante R, Napimoga MH, Macedo CG, Abdalla HB, Pieroni V, Clemente-Napimoga JT. The P2X7 receptor, cathepsin S and fractalkine in the trigeminal subnucleus caudalis signal persistent hypernociception in temporomandibular rat joints. Neuroscience. 2018;391:120–30. https://doi.org/10.1016/j.neuroscience.2018.09.005.

    Article  CAS  PubMed  Google Scholar 

  10. Carregaro V, Napimoga MH, Peres RS, Benevides L, Sacramento LA, Pinto LG, Grespan R, Cunha TM, Silva JS, Cunha FQ. Therapeutic treatment of arthritic mice with 15-deoxy Δ 12,14-prostaglandin J 2 (15d-PGJ 2) ameliorates disease through the suppression of Th17 cells and the induction of CD4 + CD25 – FOXP3 + cells. Mediat Inflamm. 2016;2016:9626427. https://doi.org/10.1155/2016/9626427.

    Article  CAS  Google Scholar 

  11. Alves CF, de Melo NFS, Fraceto LF, de Araújo DR, Napimoga MH. Effects of 15d-PGJ2-loaded poly(D,L-lactide-co-glycolide) nanocapsules on inflammation. Br J Pharmacol. 2011;162(3):623–32. https://doi.org/10.1111/j.1476-5381.2010.01057.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans RM. PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med. 2001;7(1):48–52. https://doi.org/10.1038/83336.

    Article  CAS  PubMed  Google Scholar 

  13. Chen YH, Yeh FL, Yeh SP, Ma HT, Hung SC, Li LY. Myocyte enhancer factor-2 interacting transcriptional repressor (MITR) is a switch that promotes osteogenesis and inhibits adipogenesis of mesenchymal stem cells by inactivating peroxisome proliferator-activated receptor gamma-2. J Biol Chem. 2011;286:10671–80. https://doi.org/10.1074/jbc.M110.199612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Christianson CA, Dumlao DS, Stokes JA, Dennis EA, Svensson CI, Corr M, Yaksh TL. Spinal TLR4 mediates the transition to a persistent mechanical hypersensitivity after the resolution of inflammation in serum-transferred arthritis. Pain. 2011;152(12):2881–91. https://doi.org/10.1016/j.pain.2011.09.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Churi SB, Abdel-Aleem OS, Tumber KK, Scuderi-Porter H, Taylor BK. Intrathecal rosiglitazone acts at peroxisome proliferator-activated receptor-gamma to rapidly inhibit neuropathic pain in rats. J Pain. 2008;9(7):639–49. https://doi.org/10.1016/j.jpain.2008.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clemente-Napimoga JT, Moreira JA, Grillo R, de Melo NFS, Fraceto LF, Napimoga MH. 15d-PGJ2-loaded in nanocapsules enhance the antinociceptive properties into rat temporomandibular hypernociception. Life Sci. 2012;90(23–24):944–9. https://doi.org/10.1016/j.lfs.2012.04.035.

    Article  CAS  PubMed  Google Scholar 

  17. Coutinho DS, Anjos-Valotta EA, Nascimento CVMF, Pires ALC, Napimoga MH, Carvalho VF, Torres RC, Silva PMRE, Martins MA. 15-deoxy-delta-12,14-prostaglandin J 2 inhibits lung inflammation and remodeling in distinct murine models of asthma. Front Immunol. 2017;8:740. https://doi.org/10.3389/fimmu.2017.00740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Melo NF, de Macedo CG, Bonfante R, Abdalla HB, da Silva CM, Pasquoto T, de Lima R, Fraceto LF, Clemente-Napimoga JT, Napimoga MH. 15d-PGJ2-loaded solid lipid nanoparticles: physicochemical characterization and evaluation of pharmacological effects on inflammation. PLoS One. 2016;11(8):e0161796. https://doi.org/10.1371/journal.pone.0161796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Melo NFS, Grillo R, Guilherme VA, de Araujo DR, de Paula E, Rosa AH, Fraceto LF. Poly(lactide-co-glycolide) nanocapsules containing benzocaine: influence of the composition of the oily nucleus on Physico-chemical properties and anesthetic activity. Pharm Res. 2011;28(8):1984–94. https://doi.org/10.1007/s11095-011-0425-6.

    Article  CAS  PubMed  Google Scholar 

  20. Farnesi-de-Assunção TS, Carregaro V, Trindade-da-Silva CA, de Pinho Jr AJ, Napimoga MH. The modulatory effect of 15d-PGJ2 in dendritic cells. Nucl Recept Res. 2014; 1 Article ID 101083, 7 pages. https://doi.org/10.11131/2014/101083.

  21. Farrajota K, Cheng S, Martel-Pelletier J, Afif H, Pelletier JP, Li X, Ranger P, Fahmi H. Inhibition of interleukin-1beta-induced cyclooxygenase 2 expression in human synovial fibroblasts by 15-deoxy-delta12,14-prostaglandin J2 through a histone deacetylase-independent mechanism. Arthritis Rheum. 2005;52(1):94–104. https://doi.org/10.1002/art.20714.

    Article  CAS  PubMed  Google Scholar 

  22. Fattori V, Pinho-Ribeiro FA, Staurengo-Ferrari L, Borghi SM, Rossaneis AC, Casagrande R, Veri WA Jr. The specialised pro-resolving lipid mediator maresin 1 reduces inflammatory pain with a long-lasting analgesic effect. Br J Pharmacol. 2019;176(11):1728–44. https://doi.org/10.1111/bph.14647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM. 15-deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell. 1995;83(5):803–12. https://doi.org/10.1016/0092-8674(95)90193-0.

    Article  CAS  PubMed  Google Scholar 

  24. Francisco JC, Correa Cunha R, Cardoso MA, Baggio Simeoni R, Mogharbel BF, Picharski GL, Silva Moreira Dziedzic D, Guarita-Souza LC, Carvalho KA. Decellularized amniotic membrane scaffold as a pericardial substitute: an in vivo study. Transplant Proc. 2016;48(8):2845–9. https://doi.org/10.1016/j.transproceed.2016.07.026.

    Article  CAS  PubMed  Google Scholar 

  25. Francisco JC, Uemura L, Simeoni RB, da Cunha RC, Mogharbel BF, Simeoni PRB, Naves G, Napimoga MH, Noronha L, Carvalho KAT, Moreira LFP, Guarita-Souza LC. Acellular human amniotic membrane scaffold with 15d-PGJ2 nanoparticles in post-infarct rat model. Tissue Eng Part A. 2020; https://doi.org/10.1089/ten.TEA.2019.0340.

  26. Gao J, Tang C, Tai LW, Ouyang Y, Li N, Hu Z, Chen X. Pro-resolving mediator maresin 1 ameliorates pain hypersensitivity in a rat spinal nerve ligation model of neuropathic pain. J Pain Res. 2018;11:1511–9. https://doi.org/10.2147/JPR.S160779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release. 2007;117(2):227–37. https://doi.org/10.1016/j.jconrel.2006.10.017.

    Article  CAS  PubMed  Google Scholar 

  28. Gill N, Bijjem KR, Sharma PL. Anti-inflammatory and anti-hyperalgesic effect of all-trans retinoic acid in carrageenan-induced paw edema in Wistar rats: involvement of peroxisome proliferator-activated receptor-β/δ receptors. Indian J Pharmacol. 2013;45(3):278–82. https://doi.org/10.4103/0253-7613.111944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grace PM, Hutchinson MR, Maier SF, Watkins LR. Pathological pain and the neuroimmune interface. Nat Rev Immunol. 2014;14(4):217–31. https://doi.org/10.1038/nri3621.4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gris O, López-Navidad A, Caballero F, del Campo Z, Adán A. Amniotic membrane transplantation for ocular surface pathology: long-term results. Transplant Proc. 2003;35(5):2031–5. https://doi.org/10.1016/s0041-1345(03)00699-7.

    Article  CAS  PubMed  Google Scholar 

  31. Hasegawa-Moriyama M, Kurimoto T, Nakama M, Godai K, Kojima M, Kuwaki T, Kanmura Y. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates inflammatory pain through the induction of heme oxygenase-1 in macrophages. Pain. 2013;154:1402–12. https://doi.org/10.1016/j.pain.2013.04.039.

    Article  CAS  PubMed  Google Scholar 

  32. Hasegawa-Moriyama M, Ohnou T, Godai K, Kurimoto T, Nakama M, Kanmura Y. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization. Biochem Biophys Res Commun. 2012;426(1):76–82. https://doi.org/10.1016/j.bbrc.2012.08.039.

    Article  CAS  PubMed  Google Scholar 

  33. Ingrole RSJ, Gill HS. Microneedle coating methods: a review with a perspective. J Pharmacol Exp Ther. 2019;370(3):555–69. https://doi.org/10.1124/jpet.119.258707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990;347(6294):645–50. https://doi.org/10.1038/347645a0.

    Article  CAS  PubMed  Google Scholar 

  35. Jain A, Hakim S, Woolf CJ. Unraveling the plastic peripheral neuroimmune interactome. J Immunol. 2020;204(2):257–63. https://doi.org/10.4049/jimmunol.1900818.

    Article  CAS  PubMed  Google Scholar 

  36. Kawahito Y, Kondo M, Tsubouchi Y, Hashiramoto A, Bishop-Bailey D, Inoue K, Kohno M, Yamada R, Hla T, Sano H. 15-deoxy-delta(12,14)-PGJ(2) induces synoviocyte apoptosis and suppresses adjuvant-induced arthritis in rats. J Clin Invest. 2000;106(2):189–97. https://doi.org/10.1172/JCI9652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation. Cell. 1995;83(5):813–9. https://doi.org/10.1016/0092-8674(95)90194-9.

    Article  CAS  PubMed  Google Scholar 

  38. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, Lehmann JM. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U S A. 1997;94(9):4318–23. https://doi.org/10.1073/pnas.94.9.4318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Klotz L, Hucke S, Thimm D, Classen S, Gaarz A, Schultze J, Edenhofer F, Kurts C, Klockgether T, Limmer A, Knolle P, Burgdorf S. Increased antigen crosspresentation but impaired cross-priming after activation of peroxisome proliferator-activated receptor gamma is mediated by up-regulation of B7H1. J Immunol. 2009;183(1):129–36. https://doi.org/10.4049/jimmunol.0804260.

    Article  CAS  PubMed  Google Scholar 

  40. Kolter J, Kierdorf K, Henneke P. Origin and differentiation of nerve-associated macrophages. J Immunol. 2020:204(2):271–79. https://doi.org/10.4049/jimmunol.1901077. PMID: 31907269.

  41. Krey G, Braissant O, L'Horset F, Kalkhoven E, Perroud M, Parker MG, Wahli W. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol. 1997;11(6):779–91. https://doi.org/10.1210/mend.11.6.0007.

    Article  CAS  PubMed  Google Scholar 

  42. Li J, Guo C, Wu J. 15-deoxy-∆- 12,14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of PPAR- γ: function and mechanism. PPAR Res. 2019:7242030. https://doi.org/10.1155/2019/7242030.

  43. Liu D, Geng Z, Zhu W, Wang H, Chen Y, Liang J. 15-deoxy-Δ12,14-prostaglandin J2 ameliorates endotoxin-induced acute lung injury in rats. Chin Med J (Engl). 2014;127(5):815–20. PMID: 24571868.

    Google Scholar 

  44. Macedo CG, Jain AK, Franz-Montan M, Napimoga MH, Clemente-Napimoga JT, Gill HS. Microneedles enhance topical delivery of 15-deoxy-Δ 12,14-prostaglandin J 2 and reduce nociception in temporomandibular joint of rats. J Control Release. 2017;265:22–9. https://doi.org/10.1016/j.jconrel.2017.06.031.

    Article  CAS  PubMed  Google Scholar 

  45. Macedo CG, Napimoga MH, Rocha-Neto LM, Abdalla HB, Clemente-Napimoga JT. The role of endogenous opioid peptides in the antinociceptive effect of 15-deoxy(Δ12,14)-prostaglandin J2 in the temporomandibular joint. Prostaglandins Leukot Essent Fatty Acids. 2016;110:27–34. https://doi.org/10.1016/j.plefa.2016.05.009.

    Article  CAS  PubMed  Google Scholar 

  46. Machelska H. Targeting of opioid-producing leukocytes for pain control. Neuropeptides. 2007;41(6):355–63. https://doi.org/10.1016/j.npep.2007.06.001.

    Article  CAS  PubMed  Google Scholar 

  47. Maier NK, Leppla SH, Moayeri M. The cyclopentenone prostaglandin 15d-PGJ2 inhibits the NLRP1 and NLRP3 Inflammasomes. J Immunol. 2015;194(6):2776–85. https://doi.org/10.4049/jimmunol.1401611.

    Article  CAS  PubMed  Google Scholar 

  48. Marcone S, Evans P, Fitzgerald DJ. 15-deoxy-Δ 12,14-prostaglandin J 2 modifies components of the proteasome and inhibits inflammatory responses in human endothelial cells. Front Immunol. 2016;7:459. https://doi.org/10.3389/fimmu.2016.00459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Milne GL, Yin H, Hardy KD, Davies SS, Roberts LJ 2nd. Isoprostane generation and function. Chem Rev. 2011;111:5973–96. https://doi.org/10.1021/cr200160h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mirza AZ, Althagafi II, Shamshad H. Role of PPAR receptor in different diseases and their ligands: physiological importance and clinical implications. Eur J Med Chem. 2019;166:502–13. https://doi.org/10.1016/j.ejmech.2019.01.067.

    Article  CAS  PubMed  Google Scholar 

  51. Morgenweck J, Abdel-Aleem OS, McNamara KC, Donahue RR, Badr MZ, Taylo BK. Activation of peroxisome proliferator-activated receptor gamma in brain inhibits inflammatory pain, dorsal horn expression of Fos, and local edema. Neuropharmacology. 2010;58(2):337–45. https://doi.org/10.1016/j.neuropharm.2009.10.008.

    Article  CAS  PubMed  Google Scholar 

  52. Morisseau C, Hammock BD. Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol. 2013;53:37–58. https://doi.org/10.1146/annurev-pharmtox-011112-140244.

    Article  CAS  PubMed  Google Scholar 

  53. Muri J, Feng Q, Wolleb H, Shamshiev A, Ebner C, Tortola L, Broz P, Carreira EM, Kopf M. Cyclopentenone prostaglandins and structurally related oxidized lipid species instigate and share distinct pro- and anti-inflammatory pathways. Cell Rep. 2020;30(13):4399–417.e7. https://doi.org/10.1016/j.celrep.2020.03.019.

  54. Naito Y, Takagi T, Higashimura Y. Heme oxygenase-1 and anti-inflammatory M2 macrophages. Arch Biochem Biophys. 2014;564:83–8. https://doi.org/10.1016/j.abb.2014.09.005. Epub 2014 Sep 18.

    Article  CAS  PubMed  Google Scholar 

  55. Napimoga MH, Clemente-Napimoga JT, Machabanski NM, Juliani MEA, Pedro Acras HBC, Macedo CG, Abdalla HB, de Pinho Jr AJ, Soares AB, Sperandio M, de Araújo DR. The 15d-PGJ2 hydrogel ameliorates atopic dermatitis through suppression of the immune response. Mol Med Rep. 2019;19(6):4536–44. https://doi.org/10.3892/mmr.2019.10156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Napimoga MH, Demasi AP, Bossonaro JP, de Araújo VC, Clemente-Napimoga JT, Martinez EF. Low doses of 15d-PGJ2 induce osteoblast activity in a PPAR-gamma independent manner. Int Immunopharmacol. 2013;16(2):131–8. https://doi.org/10.1016/j.intimp.2013.03.035.

    Article  CAS  PubMed  Google Scholar 

  57. Napimoga MH, Silva CAT, Carregaro V, Farnesi-de-Assunção TS, Duarte PM, de Melo NFS, Fraceto LF. Exogenous administration of 15d-PGJ2-loaded nanocapsules inhibits bone resorption in a mouse periodontitis model. J Immunol. 2012;189(2):1043–52. https://doi.org/10.4049/jimmunol.1200730.

    Article  CAS  PubMed  Google Scholar 

  58. Napimoga MH, Souza GR, Cunha TM, Ferrari LF, Clemente-Napimoga JT, Parada CA, Verri WA Jr, Cunha FQ, Ferreira SH. 15d-prostaglandin J2 inhibits inflammatory hypernociception: involvement of peripheral opioid receptor. J Pharmacol Exp Ther. 2008;324(1):313–21. https://doi.org/10.1124/jpet.107.126045.

    Article  CAS  PubMed  Google Scholar 

  59. Napimoga MH, Vieira SM, Dal-Secco D, Freitas A, Souto FO, Mestriner FL, Alves-Filho JC, Grespan R, Kawai T, Ferreira SH, Cunha FQ. Peroxisome proliferator-activated receptor-gamma ligand, 15-deoxy-delta12,14-prostaglandin J2, reduces neutrophil migration via a nitric oxide pathway. J Immunol. 2008;180(1):609–17. https://doi.org/10.4049/jimmunol.180.1.609.

    Article  CAS  PubMed  Google Scholar 

  60. Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):71. Published 2018 Sep 19. https://doi.org/10.1186/s12951-018-0392-8.

  61. Pena-dos-Santos DR, Severino FP, Pereira SA, Rodrigues DB, Cunha FQ, Vieira SM, Napimoga MH, Clemente-Napimoga JT. Activation of peripheral kappa/delta opioid receptors mediates 15-deoxy-(Delta12,14)-prostaglandin J2 induced-antinociception in rat temporomandibular joint. Neuroscience. 2009;163(4):1211–9. https://doi.org/10.1016/j.neuroscience.2009.07.052.

    Article  CAS  PubMed  Google Scholar 

  62. Penas F, Mirkin GA, Vera M, Cevey A, González CD, Gómez MI, Sales ME, Goren NB. Treatment in vitro with PPARα and PPARγ ligands drives M1-to-M2 polarization of macrophages from T. cruzi-infected mice. Biochim Biophys Acta. 2015;1852(5):893–904. https://doi.org/10.1016/j.bbadis.2014.12.019.

    Article  CAS  PubMed  Google Scholar 

  63. Piomelli D, Hohmann AG, Seybold V, Hammock BD. A lipid gate for the peripheral control of pain. J Neurosci. 2014;34(46):15184–91. https://doi.org/10.1523/JNEUROSCI.3475-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Quinteiro MS, Napimoga MH, Mesquita KP, Clemente-Napimoga JT. The indirect antinociceptive mechanism of 15d-PGJ2 on rheumatoid arthritis-induced TMJ inflammatory pain in rats. Eur J Pain. 2012;16(8):1106–15. https://doi.org/10.1002/j.1532-2149.2012.00114.x. PMID: 22354681.

  65. Quinteiro MS, Napimoga MH, Macedo CG, Freitas FF, Abdalla HB, Bonfante R, Clemente-Napimoga JT. 15-deoxy-Δ12,14-prostaglandin J2 reduces albumin-induced arthritis in temporomandibular joint of rats. Eur J Pharmacol. 2014;740:58–65. https://doi.org/10.1016/j.ejphar.2014.07.002.

    Article  CAS  Google Scholar 

  66. Rajakariar R, Hilliard M, Lawrence T, Trivedi S, Colville-Nash P, Bellingan G, Fitzgerald D, Yaqoob MM, Gilroy DW. Hematopoietic prostaglandin D2 synthase controls the onset and resolution of acute inflammation through PGD2 and 15-deoxyDelta12 14 PGJ2. Proc Natl Acad Sci U S A. 2007;104(52):20979–84. https://doi.org/10.1073/pnas.0707394104.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ricote M, Huang JT, Welch JS, Glass CK. The peroxisome proliferator-activated receptor (PPARgamma) as a regulator of monocyte/macrophage function. J Leukoc Biol. 1999;66(5):733–9. https://doi.org/10.1002/jlb.66.5.733.

    Article  CAS  PubMed  Google Scholar 

  68. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature. 1998;391:79–82. https://doi.org/10.1038/34178.

    Article  CAS  PubMed  Google Scholar 

  69. Rostami E, Kashanian S, Azandaryani AH, Faramarzi H, Dolatabadi JEN, Omidfar K. Drug targeting using solid lipid nanoparticles. Chem Phys Lipids. 2014;181:56–61. https://doi.org/10.1016/j.chemphyslip.2014.03.006.

    Article  CAS  PubMed  Google Scholar 

  70. Ruiz-Miyazawa KW, Staurengo-Ferrari L, Pinho-Ribeiro FA, Fattori V, Zaninelli TH, Badaro-Garcia S, Borghi SM, Andrade KC, Clemente-Napimoga JT, Alves-Filho JC, Cunha TM, Fraceto LF, Cunha FQ, Napimoga MH, Casagrande R, Verri WA Jr. 15d-PGJ2-loaded nanocapsules ameliorate experimental gout arthritis by reducing pain and inflammation in a PPAR-gamma-sensitive manner in mice. Sci Rep. 2018;8(1):13979. https://doi.org/10.1038/s41598-018-32334-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Safavian D, Leung CH, Kapus A, Ailenberg M, Szaszi K, Shani R, Ciano-Oliveira CD, Ghazarian M, Rotstein O. Hemorrhagic shock/resuscitation reduces the M2 phenotype of alveolar macrophages: a potential mechanism contributing to increased LPS-induced lung injury. Shock. 2019;51(2):213–20. https://doi.org/10.1097/SHK.0000000000001135.

    Article  CAS  PubMed  Google Scholar 

  72. Scher JU, Pillinger MH. 15d-PGJ2: the anti-inflammatory prostaglandin? Clin Immunol. 2005;114:100–9. https://doi.org/10.1016/j.clim.2004.09.008.

    Article  CAS  PubMed  Google Scholar 

  73. Shinoda M, Kubo A, Hayashi Y, Iwata K. Peripheral and central mechanisms of persistent orofacial pain. Front Neurosci. 2019;13:1227. https://doi.org/10.3389/fnins.2019.01227. PMID: 31798407; PMCID: PMC6863776.

  74. Straus DS, Glass CK. Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Med Res Rev. 2001;21:185–210. https://doi.org/10.1002/med.1006.

    Article  CAS  PubMed  Google Scholar 

  75. Surh YJ, Kundu JK. Signal transduction network leading to COX-2 induction: a road map in search of cancer chemopreventives. Arch Pharm Res. 2005;28(1):1–15. https://doi.org/10.1007/BF02975128.

  76. Surh YJ, Na HK, Park JM, Lee HN, Kim W, Yoon IS, Kim DD. 15-deoxy-Δ12,14-prostaglandin J2, an electrophilic lipid mediator of anti-inflammatory and pro-resolving signaling. Biochem Pharmacol. 2011;82(10):1335–51. https://doi.org/10.1016/j.bcp.2011.07.100.

    Article  CAS  PubMed  Google Scholar 

  77. Tavares V, Hirata MH, Hirata RD. Peroxisome proliferator-activated receptor gamma (PPARgamma): molecular study in glucose homeostasis, lipid metabolism and therapeutic approach. Arq Bras Endocrinol Metabol. 2007;51(4):526–33. https://doi.org/10.1590/s0004-27302007000400005.

    Article  PubMed  Google Scholar 

  78. Tilley SL, Coffman TM, Koller BH. Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J Clin Invest. 2001;108:15–23. https://doi.org/10.1172/JCI13416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tsubouchi Y, Kawahito Y, Kohno M, Inoue K, Hla T, Sano H. Feedback control of the arachidonate cascade in rheumatoid synoviocytes by 15-deoxy-delta(12,14)-prostaglandin J2. Biochem Biophys Res Commun. 2001;283(4):750–5. https://doi.org/10.1006/bbrc.2001.4847.

    Article  CAS  PubMed  Google Scholar 

  80. Vaamonde-Garcia C, Malaise O, Charlier E, Deroyer C, Neuville S, Gillet P, Kurth W, Meijide-Failde R, Malaise MG, Seny D. 15-deoxy-Δ-12, 14-prostaglandin J2 acts cooperatively with prednisolone to reduce TGF-β-induced pro-fibrotic pathways in human osteoarthritis fibroblasts. Biochem Pharmacol. 2019;165:66–78. https://doi.org/10.1016/j.bcp.2019.03.039.

    Article  CAS  PubMed  Google Scholar 

  81. Viniegra A, Goldberg H, Çil Ç, Fine N, Sheikh Z, Galli M, Freire M, Wang Y, Van Dyke TE, Glogauer M, Sima C. Resolving macrophages counter osteolysis by anabolic actions on bone cells. J Dent Res. 2018;97(10):1160–9. https://doi.org/10.1177/0022034518777973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wahli W, Braissant O, Desvergne B. Peroxisome proliferator activated receptors: transcriptional regulators of adipogenesis, lipid metabolism and more. Chem Biol. 1995;2(5):261–6. https://doi.org/10.1016/1074-5521(95)90045-4.

    Article  CAS  PubMed  Google Scholar 

  83. Weng Y, Batista-Schepman PA, Barabas ME, Harris EQ, Dinsmore TB, Kossyreva EA, Foshage AM, Wang MH, Schwab MJ, Wang VM, Stucky CL, Story GM. Prostaglandin metabolite induces inhibition of TRPA1 and channel-dependent nociception. Mol Pain. 2012;8:75. https://doi.org/10.1186/1744-8069-8-75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang Y, Wang H, Kouadir M, Song H, Shi F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis. 2019;10(2):128. https://doi.org/10.1038/s41419-019-1413-8.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zeilhofer HU. Prostanoids in nociception and pain. Biochem Pharmacol. 2007;73:165–74. https://doi.org/10.1016/j.bcp.2006.07.037.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo H. Napimoga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Napimoga, M.H., Abdalla, H.B., Clemente-Napimoga, J.T. (2021). Use of Nanotechnology to Improve 15d-PGJ2 Immunomodulatory Activities. In: Badr, M.Z. (eds) Nuclear Receptors. Springer, Cham. https://doi.org/10.1007/978-3-030-78315-0_19

Download citation

Publish with us

Policies and ethics