Skip to main content

Molecular Pharmacology of the Youngest Member of the Nuclear Receptor Family: The Mineralocorticoid Receptor

  • Chapter
  • First Online:
Nuclear Receptors
  • 810 Accesses

Abstract

The mineralocorticoid receptor (MR) was the last member of the nuclear receptor superfamily to evolve. It is responsible for the maintenance of the water and salt homeostasis. Like most ligand-activated transcription factors of this superfamily, it is activated by ligand binding. The MR exists as a large heterocomplex assembled with the heat-shock protein of 90-kDa chaperone, Hsp90, and other associated chaperones and cochaperones. The composition of this heterocomplex is affected by the nature of the bound steroid. MR biological responses are also affected by the redox status of the cell or due to protein phosphorylation. In this chapter, the conformational requirements of the steroid to become an optimal MR ligand, the role of the Hsp90-based heterocomplex, and the influence of MR modifications by oxidation and phosphorylation is discussed. These properties are analyzed in the light of the relevance of this nuclear receptor as a key pharmacological target for disorders mostly related to the hydroelectrolytic homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Evans RM. The steroid and thyroid hormone receptor superfamily. Science. 1988;240(4854):889–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hollenberg SM, Weinberger C, Ong ES, Cerelli G, Oro A, Lebo R, et al. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature. 1985;318(6047):635–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, et al. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science. 1987;237(4812):268–75.

    Article  CAS  PubMed  Google Scholar 

  4. Funder JW. Glucocorticoid and mineralocorticoid receptors: biology and clinical relevance. Annu Rev Med. 1997;48:231–40.

    Article  CAS  PubMed  Google Scholar 

  5. Funder JW, Pearce PT, Smith R, Smith AI. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science. 1988;242(4878):583–5.

    Article  CAS  PubMed  Google Scholar 

  6. Sabbadin C, Andrisani A, Ambrosini G, Bordin L, Dona G, Manso J, et al. Aldosterone in gynecology and its involvement on the risk of hypertension in pregnancy. Front Endocrinol. 2019;10:575.

    Article  Google Scholar 

  7. van Steensel B, van Binnendijk EP, Hornsby CD, van der Voort HT, Krozowski ZS, de Kloet ER, et al. Partial colocalization of glucocorticoid and mineralocorticoid receptors in discrete compartments in nuclei of rat hippocampus neurons. J Cell Sci. 1996;109(Pt 4):787–92.

    Article  PubMed  Google Scholar 

  8. Magarinos AM, Coirini H, De Nicola AF, McEwen BS. Mineralocorticoid regulation of salt intake is preserved in hippocampectomized rats. Neuroendocrinology. 1986;44(4):494–7.

    Article  CAS  PubMed  Google Scholar 

  9. de Kloet ER, Joels M. Brain mineralocorticoid receptor function in control of salt balance and stress-adaptation. Physiol Behav. 2017;178:13–20.

    Article  PubMed  CAS  Google Scholar 

  10. Joels M, de Kloet ER. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: The brain mineralocorticoid receptor: a saga in three episodes. J Endocrinol. 2017;234(1):T49–66.

    Article  CAS  PubMed  Google Scholar 

  11. Fru KN, VandeVoort CA, Chaffin CL. Mineralocorticoid synthesis during the periovulatory interval in macaques. Biol Reprod. 2006;75(4):568–74.

    Article  CAS  PubMed  Google Scholar 

  12. Milliez P, Girerd X, Plouin PF, Blacher J, Safar ME, Mourad JJ. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol. 2005;45(8):1243–8.

    Article  CAS  PubMed  Google Scholar 

  13. Stowasser M, Sharman J, Leano R, Gordon RD, Ward G, Cowley D, et al. Evidence for abnormal left ventricular structure and function in normotensive individuals with familial hyperaldosteronism type I. J Clin Endocrinol Metab. 2005;90(9):5070–6.

    Article  CAS  PubMed  Google Scholar 

  14. Jaisser F, Farman N. Emerging roles of the mineralocorticoid receptor in pathology: toward new paradigms in clinical pharmacology. Pharmacol Rev. 2016;68(1):49–75.

    Article  CAS  PubMed  Google Scholar 

  15. Preston IR, Sagliani KD, Warburton RR, Hill NS, Fanburg BL, Jaffe IZ. Mineralocorticoid receptor antagonism attenuates experimental pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2013;304(10):L678–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Daruich A, Matet A, Dirani A, Bousquet E, Zhao M, Farman N, et al. Central serous chorioretinopathy: recent findings and new physiopathology hypothesis. Prog Retin Eye Res. 2015;48:82–118.

    Article  CAS  PubMed  Google Scholar 

  17. Dobzhansky T. Nothing in biology makes sense except in the light of evolution. Am Biol Teach. 1973;35(3):125–9.

    Article  Google Scholar 

  18. Rossier BC, Baker ME, Studer RA. Epithelial sodium transport and its control by aldosterone: the story of our internal environment revisited. Physiol Rev. 2015;95(1):297–340.

    Article  PubMed  CAS  Google Scholar 

  19. Thornton JW, DeSalle R. A new method to localize and test the significance of incongruence: detecting domain shuffling in the nuclear receptor superfamily. Syst Biol. 2000;49(2):183–201.

    Article  CAS  PubMed  Google Scholar 

  20. Thornton JW. Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proc Natl Acad Sci U S A. 2001;98(10):5671–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rai S, Szeitz A, Roberts BW, Christie Q, Didier W, Eom J, et al. A putative corticosteroid hormone in Pacific lamprey, Entosphenus tridentatus. Gen Comp Endocrinol. 2015;212:178–84.

    Article  CAS  PubMed  Google Scholar 

  22. Shaughnessy CA, Barany A, McCormick SD. 11-Deoxycortisol controls hydromineral balance in the most basal osmoregulating vertebrate, sea lamprey (Petromyzon marinus). Sci Rep. 2020;10(1):12148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gomez-Sanchez E, Gomez-Sanchez CE. The multifaceted mineralocorticoid receptor. Compr Physiol. 2014;4(3):965–94.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kassahn KS, Ragan MA, Funder JW. Mineralocorticoid receptors: evolutionary and pathophysiological considerations. Endocrinology. 2011;152(5):1883–90.

    Article  CAS  PubMed  Google Scholar 

  25. Pratt WB, Galigniana MD, Morishima Y, Murphy PJ. Role of molecular chaperones in steroid receptor action. Essays Biochem. 2004;40:41–58.

    Article  CAS  PubMed  Google Scholar 

  26. Kosano H, Stensgard B, Charlesworth MC, McMahon N, Toft D. The assembly of progesterone receptor-hsp90 complexes using purified proteins. J Biol Chem. 1998;273(49):32973–9.

    Article  CAS  PubMed  Google Scholar 

  27. Galigniana MD, Echeverria PC, Erlejman AG, Piwien-Pilipuk G. Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore. Nucleus. 2010;1(4):299–308.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pratt WB, Silverstein AM, Galigniana MD. A model for the cytoplasmic trafficking of signalling proteins involving the hsp90-binding immunophilins and p50cdc37. Cell Signal. 1999;11(12):839–51.

    Article  CAS  PubMed  Google Scholar 

  29. Murphy PJ, Kanelakis KC, Galigniana MD, Morishima Y, Pratt WB. Stoichiometry, abundance, and functional significance of the hsp90/hsp70-based multiprotein chaperone machinery in reticulocyte lysate. J Biol Chem. 2001;276(32):30092–8.

    Article  CAS  PubMed  Google Scholar 

  30. Molinari AM, Machado-Rada MY, Mazaira GI, Erlejman AG, Galigniana MD. Molecular basis of mineralocorticoid receptor action in the nervous system. CNS Neurol Disord Drug Targets. 2013;12(8):1163–74.

    CAS  PubMed  Google Scholar 

  31. Mazaira G, Lagadari M, Erlejman AG, Galigniana MD. Molecular chaperones shape steroid receptor action and pharmacologic strategies. J J Cell Mol Biol. 2015;1(4):1–7.

    Google Scholar 

  32. Pratt WB, Galigniana MD, Harrell JM, DeFranco DB. Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal. 2004;16(8):857–72.

    Article  CAS  PubMed  Google Scholar 

  33. Murphy PJ, Morishima Y, Chen H, Galigniana MD, Mansfield JF, Simons SS Jr, et al. Visualization and mechanism of assembly of a glucocorticoid receptor.Hsp70 complex that is primed for subsequent Hsp90-dependent opening of the steroid binding cleft. J Biol Chem. 2003;278(37):34764–73.

    Article  CAS  PubMed  Google Scholar 

  34. Schopf FH, Biebl MM, Buchner J. The HSP90 chaperone machinery. Nat Rev Mol Cell Biol. 2017;18(6):345–60.

    Article  CAS  PubMed  Google Scholar 

  35. Li J, Richter K, Buchner J. Mixed Hsp90-cochaperone complexes are important for the progression of the reaction cycle. Nat Struct Mol Biol. 2011;18(1):61–6.

    Article  PubMed  CAS  Google Scholar 

  36. Kanelakis KC, Murphy PJ, Galigniana MD, Morishima Y, Takayama S, Reed JC, et al. hsp70 interacting protein Hip does not affect glucocorticoid receptor folding by the hsp90-based chaperone machinery except to oppose the effect of BAG-1. Biochemistry. 2000;39(46):14314–21.

    Article  CAS  PubMed  Google Scholar 

  37. Silverstein AM, Galigniana MD, Kanelakis KC, Radanyi C, Renoir JM, Pratt WB. Different regions of the immunophilin FKBP52 determine its association with the glucocorticoid receptor, hsp90, and cytoplasmic dynein. J Biol Chem. 1999;274(52):36980–6.

    Article  CAS  PubMed  Google Scholar 

  38. Gallo LI, Ghini AA, Piwien Pilipuk G, Galigniana MD. Differential recruitment of tetratricorpeptide repeat domain immunophilins to the mineralocorticoid receptor influences both heat-shock protein 90-dependent retrotransport and hormone-dependent transcriptional activity. Biochemistry. 2007;46(49):14044–57.

    Article  CAS  PubMed  Google Scholar 

  39. Sivils JC, Storer CL, Galigniana MD, Cox MB. Regulation of steroid hormone receptor function by the 52-kDa FK506-binding protein (FKBP52). Curr Opin Pharmacol. 2011;11(4):314–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Galigniana MD, Erlejman AG, Monte M, Gomez-Sanchez C, Piwien-Pilipuk G. The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events. Mol Cell Biol. 2010;30(5):1285–98.

    Article  CAS  PubMed  Google Scholar 

  41. Zgajnar NR, De Leo SA, Lotufo CM, Erlejman AG, Piwien-Pilipuk G, Galigniana MD. Biological actions of the Hsp90-binding Immunophilins FKBP51 and FKBP52. Biomol Ther. 2019;9(2):52.

    Google Scholar 

  42. Erlejman AG, Lagadari M, Harris DC, Cox MB, Galigniana MD. Molecular chaperone activity and biological regulatory actions of the TPR-domain immunophilins FKBP51 and FKBP52. Curr Protein Pept Sci. 2014;15(3):205–15.

    Article  CAS  PubMed  Google Scholar 

  43. Storer CL, Dickey CA, Galigniana MD, Rein T, Cox MB. FKBP51 and FKBP52 in signaling and disease. Trends Endocrinol Metab. 2011;22(12):481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Quinta HR, Galigniana NM, Erlejman AG, Lagadari M, Piwien-Pilipuk G, Galigniana MD. Management of cytoskeleton architecture by molecular chaperones and immunophilins. Cell Signal. 2011;23(12):1907–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Salatino M, Beguelin W, Peters MG, Carnevale R, Proietti CJ, Galigniana MD, et al. Progestin-induced caveolin-1 expression mediates breast cancer cell proliferation. Oncogene. 2006;25(59):7723–39.

    Article  CAS  PubMed  Google Scholar 

  46. Quintá HR, Maschi D, Gomez-Sanchez C, Piwien-Pilipuk G, Galigniana MD. Subcellular rearrangement of hsp90-binding immunophilins accompanies neuronal differentiation and neurite outgrowth. J Neurochem. 2010;115(3):716–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ratajczak T, Ward BK, Cluning C, Allan RK. Cyclophilin 40: an Hsp90-cochaperone associated with apo-steroid receptors. Int J Biochem Cell Biol. 2009;41(8-9):1652–5.

    Article  CAS  PubMed  Google Scholar 

  48. Huyet J, Pinon GM, Fay MR, Rafestin-Oblin ME, Fagart J. Structural determinants of ligand binding to the mineralocorticoid receptor. Mol Cell Endocrinol. 2012;350(2):187–95.

    Article  CAS  PubMed  Google Scholar 

  49. Faresse N, Ruffieux-Daidie D, Salamin M, Gomez-Sanchez CE, Staub O. Mineralocorticoid receptor degradation is promoted by Hsp90 inhibition and the ubiquitin-protein ligase CHIP. Am J Physiol Renal Physiol. 2010;299(6):F1462–72.

    Article  CAS  PubMed  Google Scholar 

  50. McDonough H, Patterson C. CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones. 2003;8(4):303–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Galigniana MD. Functional regulation of corticosteroid receptors by phosphorylation and redox potential. Curr Topics Steroid Res. 2000;3:1–22.

    CAS  Google Scholar 

  52. Galigniana MD, Piwien Pilipuk G, Kanelakis KC, Burton G, Lantos CP. Molecular mechanism of activation and nuclear translocation of the mineralocorticoid receptor upon binding of pregnanesteroids. Mol Cell Endocrinol. 2004;217(1-2):167–79.

    Article  CAS  PubMed  Google Scholar 

  53. Pearce D, Naray-Fejes-Toth A, Fejes-Toth G. Determinants of subnuclear organization of mineralocorticoid receptor characterized through analysis of wild type and mutant receptors. J Biol Chem. 2002;277(2):1451–6.

    Article  CAS  PubMed  Google Scholar 

  54. Galigniana MD, Radanyi C, Renoir JM, Housley PR, Pratt WB. Evidence that the peptidylprolyl isomerase domain of the hsp90-binding immunophilin FKBP52 is involved in both dynein interaction and glucocorticoid receptor movement to the nucleus. J Biol Chem. 2001;276(18):14884–9.

    Article  CAS  PubMed  Google Scholar 

  55. Wochnik GM, Ruegg J, Abel GA, Schmidt U, Holsboer F, Rein T. FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J Biol Chem. 2005;280(6):4609–16.

    Article  CAS  PubMed  Google Scholar 

  56. Piwien Pilipuk G, Vinson GP, Sanchez CG, Galigniana MD. Evidence for NL1-independent nuclear translocation of the mineralocorticoid receptor. Biochemistry. 2007;46(5):1389–97.

    Article  CAS  PubMed  Google Scholar 

  57. Erlejman AG, De Leo SA, Mazaira GI, Molinari AM, Camisay MF, Fontana V, et al. NF-kappaB transcriptional activity is modulated by FK506-binding proteins FKBP51 and FKBP52: a role for peptidyl-prolyl isomerase activity. J Biol Chem. 2014;289(38):26263–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Galigniana MD, Harrell JM, Murphy PJ, Chinkers M, Radanyi C, Renoir JM, et al. Binding of hsp90-associated immunophilins to cytoplasmic dynein: direct binding and in vivo evidence that the peptidylprolyl isomerase domain is a dynein interaction domain. Biochemistry. 2002;41(46):13602–10.

    Article  CAS  PubMed  Google Scholar 

  59. Gallo LI, Lagadari M, Piwien-Pilipuk G, Galigniana MD. The 90-kDa heat-shock protein (Hsp90)-binding immunophilin FKBP51 is a mitochondrial protein that translocates to the nucleus to protect cells against oxidative stress. J Biol Chem. 2011;286(34):30152–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Toneatto J, Guber S, Charo NL, Susperreguy S, Schwartz J, Galigniana MD, et al. Dynamic mitochondrial-nuclear redistribution of the immunophilin FKBP51 is regulated by the PKA signaling pathway to control gene expression during adipocyte differentiation. J Cell Sci. 2013;126(Pt 23):5357–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Harrell JM, Murphy PJ, Morishima Y, Chen H, Mansfield JF, Galigniana MD, et al. Evidence for glucocorticoid receptor transport on microtubules by dynein. J Biol Chem. 2004;279(52):54647–54.

    Article  CAS  PubMed  Google Scholar 

  62. Echeverria PC, Mazaira G, Erlejman A, Gomez-Sanchez C, Piwien Pilipuk G, Galigniana MD. Nuclear import of the glucocorticoid receptor-hsp90 complex through the nuclear pore complex is mediated by its interaction with Nup62 and importin beta. Mol Cell Biol. 2009;29(17):4788–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mazaira GI, Echeverria PC, Galigniana MD. Nucleocytoplasmic shuttling of the glucocorticoid receptor is influenced by tetratricopeptide repeat-containing proteins. J Cell Sci. 2020;133(12):jcs238873.

    Article  CAS  PubMed  Google Scholar 

  64. Frey S, Richter RP, Gorlich D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science. 2006;314(5800):815–7.

    Article  CAS  PubMed  Google Scholar 

  65. Grossmann C, Ruhs S, Langenbruch L, Mildenberger S, Stratz N, Schumann K, et al. Nuclear shuttling precedes dimerization in mineralocorticoid receptor signaling. Chem Biol. 2012;19(6):742–51.

    Article  CAS  PubMed  Google Scholar 

  66. Presman DM, Ogara MF, Stortz M, Alvarez LD, Pooley JR, Schiltz RL, et al. Live cell imaging unveils multiple domain requirements for in vivo dimerization of the glucocorticoid receptor. PLoS Biol. 2014;12(3):e1001813.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Galigniana MD. Steroid receptor coupling becomes nuclear. Chem Biol. 2012;19(6):662–3.

    Article  CAS  PubMed  Google Scholar 

  68. Lagadari M, De Leo SA, Camisay MF, Galigniana MD, Erlejman AG. Regulation of NF-kappaB signalling cascade by immunophilins. Curr Mol Pharmacol. 2016;9(2):99–108.

    Article  CAS  PubMed  Google Scholar 

  69. Duax WL, Cody V, Griffin JF, Rohrer DC, Weeks CM. Molecular conformation and protein binding affinity of progestins. J Toxicol Environ Health. 1978;4(2-3):205–27.

    Article  CAS  PubMed  Google Scholar 

  70. Duax WL, Griffin JF, Strong PD, Funder JW, Ulick S. Molecular structure of 18-deoxyaldosterone and its relationship to receptor binding and activity. J Am Chem Soc. 1982;104(25):7291–3.

    Article  CAS  Google Scholar 

  71. Duax WL, Hauptman H. The crystal structure and molecular conformation of aldosterone. J Am Chem Soc. 1972;94(15):5467–71.

    Article  CAS  PubMed  Google Scholar 

  72. Yamakawa M, Ezumi K, Shiro M, Nakai H, Kamata S, Matsui T, et al. Relationships of the molecular structure of aldosterone derivatives with their binding affinity for mineralocorticoid receptor. Mol Pharmacol. 1986;30(6):585–9.

    CAS  PubMed  Google Scholar 

  73. Fattah DI, Whitehouse BJ, Vinson GP. Proceedings: synthesis of 18-oxygenated steroids in the rat adrenal cortex. J Endocrinol. 1975;65(3):50P–1P.

    CAS  PubMed  Google Scholar 

  74. Burton G, Galigniana M, De Lavallaz S, Brachet-Cota AL, Sproviero EM, Ghini AA, et al. Sodium-retaining activity of some natural and synthetic 21-deoxysteroids. Mol Pharmacol. 1995;47(3):535–43.

    CAS  PubMed  Google Scholar 

  75. Piwien-Pilipuk G, Kanelakis KC, Galigniana MD. Correlation between pregnanesteroid conformation, receptor affinity, and anti-natriuretic effect. Eur J Pharmacol. 2002;454(2-3):131–43.

    Article  CAS  PubMed  Google Scholar 

  76. Vicent GP, Monteserin MC, Veleiro AS, Burton G, Lantos CP, Galigniana MD. 21-Hydroxy-6,19-oxidoprogesterone: a novel synthetic steroid with specific antiglucocorticoid properties in the rat. Mol Pharmacol. 1997;52(4):749–53.

    Article  CAS  PubMed  Google Scholar 

  77. Galigniana MD, Piwien PG. Activation of the ligand-mineralocorticoid receptor functional unit by ancient, classical, and novel ligands. Structure-activity relationship. Vitam Horm. 2004;69:31–68.

    Article  CAS  PubMed  Google Scholar 

  78. Gomez-Sanchez CE, Gomez-Sanchez EP, Galigniana MD. Aldosterone receptors and their renal effects: molecular biology and gene regulation. In: Singh AK, Williams GH, editors. Textbook of nephro-endocrinology. London, UK: Academic Press; 2009. p. 329–48.

    Chapter  Google Scholar 

  79. Pitt B, Pedro Ferreira J, Zannad F. Mineralocorticoid receptor antagonists in patients with heart failure: current experience and future perspectives. Eur Heart J Cardiovasc Pharmacother. 2017;3(1):48–57.

    Article  PubMed  Google Scholar 

  80. Funder JW. Mineralocorticoid receptor antagonists: emerging roles in cardiovascular medicine. Integr Blood Pressure Control. 2013;6:129–38.

    Article  CAS  Google Scholar 

  81. Kolkhof P, Barfacker L. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Mineralocorticoid receptor antagonists: 60 years of research and development. J Endocrinol. 2017;234(1):T125–T40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nordqvist A, Granberg KL. Mineralocorticoid receptor antagonists. Vitam Horm. 2019;109:151–88.

    Article  CAS  PubMed  Google Scholar 

  83. Parthasarathy HK, Menard J, White WB, Young WF Jr, Williams GH, Williams B, et al. A double-blind, randomized study comparing the antihypertensive effect of eplerenone and spironolactone in patients with hypertension and evidence of primary aldosteronism. J Hypertens. 2011;29(5):980–90.

    Article  CAS  PubMed  Google Scholar 

  84. Baker ME, Katsu Y. Progesterone: an enigmatic ligand for the mineralocorticoid receptor. Biochem Pharmacol. 2020;177:113976.

    Article  CAS  PubMed  Google Scholar 

  85. Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science. 2000;289(5476):119–23.

    Article  CAS  PubMed  Google Scholar 

  86. Bledsoe RK, Madauss KP, Holt JA, Apolito CJ, Lambert MH, Pearce KH, et al. A ligand-mediated hydrogen bond network required for the activation of the mineralocorticoid receptor. J Biol Chem. 2005;280(35):31283–93.

    Article  CAS  PubMed  Google Scholar 

  87. De Bosscher K, Haegeman G, Elewaut D. Targeting inflammation using selective glucocorticoid receptor modulators. Curr Opin Pharmacol. 2010;10(4):497–504.

    Article  PubMed  CAS  Google Scholar 

  88. Rafestin-Oblin ME, Souque A, Bocchi B, Pinon G, Fagart J, Vandewalle A. The severe form of hypertension caused by the activating S810L mutation in the mineralocorticoid receptor is cortisone related. Endocrinology. 2003;144(2):528–33.

    Article  CAS  PubMed  Google Scholar 

  89. Alnemri ES, Maksymowych AB, Robertson NM, Litwack G. Characterization and purification of a functional rat glucocorticoid receptor overexpressed in a baculovirus system. J Biol Chem. 1991;266(6):3925–36.

    Article  CAS  PubMed  Google Scholar 

  90. Galigniana MD. Native rat kidney mineralocorticoid receptor is a phosphoprotein whose transformation to a DNA-binding form is induced by phosphatases. Biochem J. 1998;333(Pt 3):555–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Piwien-Pilipuk G, Galigniana MD. Tautomycin inhibits phosphatase-dependent transformation of the rat kidney mineralocorticoid receptor. Mol Cell Endocrinol. 1998;144(1-2):119–30.

    Article  CAS  PubMed  Google Scholar 

  92. Shibata S. Context-dependent mechanisms modulating aldosterone signaling in the kidney. Clin Exp Nephrol. 2016;20(5):663–70.

    Article  CAS  PubMed  Google Scholar 

  93. Shibata S, Rinehart J, Zhang J, Moeckel G, Castaneda-Bueno M, Stiegler AL, et al. Mineralocorticoid receptor phosphorylation regulates ligand binding and renal response to volume depletion and hyperkalemia. Cell Metab. 2013;18(5):660–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shibata S, Ishizawa K, Wang Q, Xu N, Fujita T, Uchida S, et al. ULK1 phosphorylates and regulates mineralocorticoid receptor. Cell Rep. 2018;24(3):569–76.

    Article  CAS  PubMed  Google Scholar 

  95. Presman DM, Hoijman E, Ceballos NR, Galigniana MD, Pecci A. Melatonin inhibits glucocorticoid receptor nuclear translocation in mouse thymocytes. Endocrinology. 2006;147(11):5452–9.

    Article  CAS  PubMed  Google Scholar 

  96. Funder JW. Mineralocorticoid receptors: distribution and activation. Heart Fail Rev. 2005;10(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  97. Mihailidou AS, Funder JW. Nongenomic effects of mineralocorticoid receptor activation in the cardiovascular system. Steroids. 2005;70(5-7):347–51.

    Article  CAS  PubMed  Google Scholar 

  98. Sato A, Funder JW. High glucose stimulates aldosterone-induced hypertrophy via type I mineralocorticoid receptors in neonatal rat cardiomyocytes. Endocrinology. 1996;137(10):4145–53.

    Article  CAS  PubMed  Google Scholar 

  99. Rossier MF, Lenglet S, Vetterli L, Python M, Maturana A. Corticosteroids and redox potential modulate spontaneous contractions in isolated rat ventricular cardiomyocytes. Hypertension. 2008;52(4):721–8.

    Article  CAS  PubMed  Google Scholar 

  100. Townsend DM, Findlay VL, Tew KD. Glutathione S-transferases as regulators of kinase pathways and anticancer drug targets. Methods Enzymol. 2005;401:287–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Le Moellic C, Ouvrard-Pascaud A, Capurro C, Cluzeaud F, Fay M, Jaisser F, et al. Early nongenomic events in aldosterone action in renal collecting duct cells: PKCalpha activation, mineralocorticoid receptor phosphorylation, and cross-talk with the genomic response. J Am Soc Nephrol. 2004;15(5):1145–60.

    PubMed  Google Scholar 

  102. Lu Q, Davel AP, McGraw AP, Rao SP, Newfell BG, Jaffe IZ. PKCdelta mediates mineralocorticoid receptor activation by angiotensin II to modulate smooth muscle cell function. Endocrinology. 2019;160(9):2101–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Newfell BG, Iyer LK, Mohammad NN, McGraw AP, Ehsan A, Rosano G, et al. Aldosterone regulates vascular gene transcription via oxidative stress-dependent and -independent pathways. Arterioscler Thromb Vasc Biol. 2011;31(8):1871–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ong GS, Young MJ. Mineralocorticoid regulation of cell function: the role of rapid signalling and gene transcription pathways. J Mol Endocrinol. 2017;58(1):R33–57.

    Article  CAS  PubMed  Google Scholar 

  105. Dever TE. Translation initiation: adept at adapting. Trends Biochem Sci. 1999;24(10):398–403.

    Article  CAS  PubMed  Google Scholar 

  106. Pearce D. The role of SGK1 in hormone-regulated sodium transport. Trends Endocrinol Metab. 2001;12(8):341–7.

    Article  CAS  PubMed  Google Scholar 

  107. Williams B, MacDonald TM, Morant S, Webb DJ, Sever P, McInnes G, et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet. 2015;386(10008):2059–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348(14):1309–21.

    Article  CAS  PubMed  Google Scholar 

  109. Filippatos G, Anker SD, Bohm M, Gheorghiade M, Kober L, Krum H, et al. A randomized controlled study of finerenone vs. eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease. Eur Heart J. 2016;37(27):2105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bakris GL, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H, et al. Effect of Finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA. 2015;314(9):884–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is indebted for the financial support received from Universidad de Buenos Aires (UBACYT 20020170100558BA) and Agencia Nacional de Promoción Científica y Tecnológica (PICT-2016-0545 and PICT-2018-0546).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario D. Galigniana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Galigniana, M.D. (2021). Molecular Pharmacology of the Youngest Member of the Nuclear Receptor Family: The Mineralocorticoid Receptor. In: Badr, M.Z. (eds) Nuclear Receptors. Springer, Cham. https://doi.org/10.1007/978-3-030-78315-0_1

Download citation

Publish with us

Policies and ethics