Skip to main content

Engendering Trust in Automated Feedback: A Two Step Comparison of Feedbacks in Gesture Based Learning

Part of the Lecture Notes in Computer Science book series (LNAI,volume 12748)


Advances in AI and Visual Recognition have paved the pathway for cutting edge research in Gesture Recognition. While automated feedback is able to open doors for newer opportunities in gesture based learning and practice, the effectiveness of these feedback as compared to manual feedback remains as a question in the minds of the users. For learners of American Sign Language (ASL), automated feedback generated by an application often causes a sense of apprehension because: a) learners are unaware of the automated feedback generation process, and b) learners fear that they can not trust the automated feedback as it may not be as good as the manual feedback. We use an ASL learning application that provides fine grained explainable feedback and follow a two step process to present a comparison between the automated feedback and the manual feedback provided by experts.


  • Automated feedback
  • Gesture based learning
  • Inclusion

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-78292-4_16
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-78292-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.


  1. Alwardat, M., et al.: Effectiveness of robot-assisted gait training on motor impairments in people with Parkinson’s disease: a systematic review and meta-analysis. Int. J. Rehabil. Res. 41, 1 (2018).

  2. Banerjee, A., Lamrani, I., Hossain, S., Paudyal, P., Gupta, S.K.S.: AI enabled tutor for accessible training. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12163, pp. 29–42. Springer, Cham (2020).

    CrossRef  Google Scholar 

  3. Banerjee, A., Lamrani, I., Paudyal, P., Gupta, S.: Generation of movement explanations for testing gesture based co-operative learning applications. In: 2019 IEEE International Conference On Artificial Intelligence Testing (AITest), pp. 9–16. IEEE (2019)

    Google Scholar 

  4. Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technology: a comparison of two theoretical models. Manage. Sci. 35(8), 982–1003 (1989)

    CrossRef  Google Scholar 

  5. Ellis, K., Fisher, J., Willoughby, L., Barca, J.: A design science exploration of a visual-spatial learning system with feedback (2016)

    Google Scholar 

  6. Hossain, S., Banerjee, A., Gupta, S.K.S.: Personalized technical learning assistance for deaf and hard of hearing students. In: Workshop on Artificial Intelligence for Education, AAAI 2020. New York, USA (2020)

    Google Scholar 

  7. Huenerfauth, M., Gale, E., Penly, B., Pillutla, S., Willard, M., Hariharan, D.: Evaluation of language feedback methods for student videos of American sign language. ACM Trans. Access. Comput. 10(1) (2017).

  8. Irons, A.: Enhancing Learning Through Formative Assessment and Feedback. Routledge (2007)

    Google Scholar 

  9. Jiang, Q., Liu, M., Wang, X., Ge, M., Lin, L.: Human motion segmentation and recognition using machine vision for mechanical assembly operation. Springerplus 5(1), 1–18 (2016).

    CrossRef  Google Scholar 

  10. Kamzin, A., Amperyani, A., Sukhapalli, P., Banerjee, A., Gupta, S.: Concept embedding through canonical forms: a case study on zero-shot asl recognition. In: ICPR 2020, p. 8 (2021)

    Google Scholar 

  11. Kamzin, A., Paudyal, P., Banerjee, A., Gupta, S.K.: Evaluating the gap between hype and performance of AI systems (2020)

    Google Scholar 

  12. Matsumura, S., Hann, G.: Computer anxiety and students’ preferred feedback methods in EFL writing. Mod. Lang. J. 88(3), 403–415 (2004)

    CrossRef  Google Scholar 

  13. McFarland, T.: Military robots: mapping the moral landscape [book reviews]. IEEE Technol. Soc. Mag. 35(2), 23–25 (2016)

    CrossRef  Google Scholar 

  14. Min, H., Morales, D., Orgill, D., Smink, D., Yule, S.: Systematic review of coaching to enhance surgeons’ operative performance. Surgery 158 (2015).

  15. MotionSavvy (2016). Accessed 15 Nov 2016

  16. Papandreou, G., et al.: Towards accurate multi-person pose estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4903–4911 (2017)

    Google Scholar 

  17. Paudyal, P., Banerjee, A., Gupta, S.: On evaluating the effects of feedback for sign language learning using explainable AI. In: Proceedings of the 25th International Conference on Intelligent User Interfaces Companion, pp. 83–84. IUI 2020, Association for Computing Machinery, New York (2020).

  18. Paudyal, P., Lee, J., Kamzin, A., Soudki, M., Banerjee, A., Gupta, S.: Learn2sign: explainable AI for sign language learning. In: CEUR Workshop Proceedings, vol. 2327. CEUR-WS (2019)

    Google Scholar 

  19. Perretta, J., Weimer, W., DeOrio, A.: Human vs. automated coding style grading in computing education. In: 2019 ASEE Annual Conference and Exposition (2019)

    Google Scholar 

  20. Phan, H.D., Ellis, K., Dorin, A., Olivier, P.: Feedback strategies for embodied agents to enhance sign language vocabulary learning. In: IVA 2020. Association for Computing Machinery, New York (2020).

  21. Riley, M., Ude, A., Atkeson, C., Cheng, G.: Coaching: an approach to efficiently and intuitively create humanoid robot behaviors. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots, pp. 567–574 (2006)

    Google Scholar 

  22. Salichs, M.A., Encinar, I.P., Salichs, E., Castro-González, Á., Malfaz, M.: Study of scenarios and technical requirements of a social assistive robot for Alzheimer’s disease patients and their caregivers. Int. J. Soc. Robot. 8(1), 85–102 (2015).

    CrossRef  Google Scholar 

  23. Santamaría Lancho, M., Hernández, M., Sánchez-Elvira Paniagua, Á., Luzón Encabo, J.M., de Jorge-Botana, G.: Using semantic technologies for formative assessment and scoring in large courses and MOOCs. J. Interactive Media Educ. 2018(1) (2018)

    Google Scholar 

  24. Sharkey, N.E.: The evitability of autonomous robot warfare. Int. Rev. Red Cross 94(886), 787–799 (2012).

    CrossRef  Google Scholar 

  25. Stokoe Jr., W.C.: Sign language structure: an outline of the visual communication systems of the American deaf. J. Deaf Stud. Deaf Educ. 10(1), 3–37 (2005)

    Google Scholar 

  26. Zhang, Z.V., Hyland, K.: Student engagement with teacher and automated feedback on l2 writing. Assess. Writ. 36, 90–102 (2018)

    CrossRef  Google Scholar 

  27. Zhu, M., Liu, O.L., Lee, H.S.: The effect of automated feedback on revision behavior and learning gains in formative assessment of scientific argument writing. Comput. Educ. 143, 103668 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Sameena Hossain , Azamat Kamzin , Venkata Naga Sai Apurupa Amperayani , Ayan Banerjee or Sandeep K. S. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Hossain, S., Kamzin, A., Amperayani, V.N.S.A., Paudyal, P., Banerjee, A., Gupta, S.K.S. (2021). Engendering Trust in Automated Feedback: A Two Step Comparison of Feedbacks in Gesture Based Learning. In: Roll, I., McNamara, D., Sosnovsky, S., Luckin, R., Dimitrova, V. (eds) Artificial Intelligence in Education. AIED 2021. Lecture Notes in Computer Science(), vol 12748. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78291-7

  • Online ISBN: 978-3-030-78292-4

  • eBook Packages: Computer ScienceComputer Science (R0)