Skip to main content

Evaluation of Automated Image Descriptions for Visually Impaired Students

  • Conference paper
  • First Online:
Artificial Intelligence in Education (AIED 2021)

Abstract

Illustrations are widely used in education, and sometimes, alternatives are not available for visually impaired students. Therefore, those students would benefit greatly from an automatic illustration description system, but only if those descriptions were complete, correct, and easily understandable using a screenreader. In this paper, we report on a study for the assessment of automated image descriptions. We interviewed experts to establish evaluation criteria, which we then used to create an evaluation questionnaire for sighted non-expert raters, and description templates. We used this questionnaire to evaluate the quality of descriptions which could be generated with a template-based automatic image describer. We present evidence that these templates have the potential to generate useful descriptions, and that the questionnaire identifies problems with description templates.

This work is financially supported by the German Federal Ministry of Education and Research (BMBF) and the European Social Fund (ESF) (Project InclusiveOCW, no. 01PE17004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ferres, L., Parush, A., Roberts, S., Lindgaard, G.: Helping people with visual impairments gain access to graphical information through natural language: the iGraph system. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2006. LNCS, vol. 4061, pp. 1122–1130. Springer, Heidelberg (2006). https://doi.org/10.1007/11788713_163

    Chapter  Google Scholar 

  2. Jessen, M., Böschen, F., Scherp, A.: Text localization in scientific figures using fully convolutional neural networks on limited training data. In: Schimmler, S., Borghoff, U.M. (eds.) Proceedings of the CM Symposium on Document Engineering 2019, Berlin, Germany, 23–26 September 2019, pp. 13:1–13:10. ACM (2019). https://doi.org/10.1145/3342558.3345396

  3. Kembhavi, A., Salvato, M., Kolve, E., Seo, M., Hajishirzi, H., Farhadi, A.: A diagram is worth a dozen images. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 235–251. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_15

    Chapter  Google Scholar 

  4. Le, A.D., Indurkhya, B., Nakagawa, M.: Pattern generation strategies for improving recognition of handwritten mathematical expressions. Pattern Recogn. Lett. 128, 255–262 (2019). https://doi.org/10.1016/j.patrec.2019.09.002

  5. Liu, L., Ouyang, W., Wang, X., Fieguth, P.W., Chen, J., Liu, X., Pietikäinen, M.: Deep learning for generic object detection: a survey. Int. J. Comput. Vis. 128(2), 261–318 (2020). https://doi.org/10.1007/s11263-019-01247-4

  6. Morash, V.S., Siu, Y., Miele, J.A., Hasty, L., Landau, S.: Guiding novice web workers in making image descriptions using templates. TACCESS 7(4), 12:1–12:21 (2015). https://doi.org/10.1145/2764916

  7. Morris, D., Tang, P., Ewerth, R.: A neural approach for text extraction from scholarly figures. In: 2019 International Conference on Document Analysis and Recognition, ICDAR 2019, Sydney, Australia, 20–25 September 2019, pp. 1438–1443. IEEE (2019). https://doi.org/10.1109/ICDAR.2019.00231

  8. Morris, M.R., Johnson, J., Bennett, C.L., Cutrell, E.: Rich representations of visual content for screen reader users. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI 2018, Montreal, QC, Canada, 21–26 April 2018. p. 59 (2018). https://doi.org/10.1145/3173574.3173633

  9. NCAM, DIAGRAM: Image description guidelines. http://diagramcenter.org/table-of-contents-2.html

  10. Park, C.C., Kim, B., Kim, G.: Attend to you: Personalized image captioning with context sequence memory networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 6432–6440. IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.681

  11. Reid, L.G., Snow-Weaver, A.: WCAG 2.0: a web accessibility standard for the evolving web. In: Yesilada, Y., Sloan, D. (eds.) Proceedings of the International Cross-Disciplinary Conference on Web Accessibility, W4A 2008, Beijing, China, 21–22 April 2008, pp. 109–115. ACM International Conference Proceeding Series, ACM (2008).https://doi.org/10.1145/1368044.1368069

  12. Shuster, K., Humeau, S., Hu, H., Bordes, A., Weston, J.: Engaging image captioning via personality. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 12516–12526. Computer Vision Foundation / IEEE (2019). https://doi.org/10.1109/CVPR.2019.01280

  13. Zhang, J., Du, J., Dai, L.: Multi-scale attention with dense encoder for handwritten mathematical expression recognition. In: 24th International Conference on Pattern Recognition, ICPR 2018, Beijing, China, 20–24 August 2018, pp. 2245–2250. IEEE Computer Society (2018). https://doi.org/10.1109/ICPR.2018.8546031

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anett Hoppe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoppe, A., Morris, D., Ewerth, R. (2021). Evaluation of Automated Image Descriptions for Visually Impaired Students. In: Roll, I., McNamara, D., Sosnovsky, S., Luckin, R., Dimitrova, V. (eds) Artificial Intelligence in Education. AIED 2021. Lecture Notes in Computer Science(), vol 12749. Springer, Cham. https://doi.org/10.1007/978-3-030-78270-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78270-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78269-6

  • Online ISBN: 978-3-030-78270-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics