Skip to main content

Strengthening of Feasibility Cuts in Logic-Based Benders Decomposition

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2021)

Abstract

As for any decomposition method, the computational performance of a logic-based Benders decomposition (LBBD) scheme relies on the quality of the feedback information. Therefore, an important acceleration technique in LBBD is to strengthen feasibility cuts by reducing their sizes. This is typically done by solving additional subproblems to evaluate potential cuts. In this paper, we study three cut-strengthening algorithms that differ in the computational efforts made to find stronger cuts and in the guarantees with respect to the strengths of the cuts. We give a unified description of these algorithms and present a computational evaluation of their impact on the efficiency of a LBBD scheme. This evaluation is made for three different problem formulations, using over 2000 instances from five different applications. Our results show that it is usually beneficial to invest the time needed to obtain irreducible cuts. In particular, the use of the depth-first binary search cut-strengthening algorithm gives a good performance. Another observation is that when the subproblem can be separated into small independent problems, the impact of cut strengthening is dominated by that of the separation, which has an automatic strengthening effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://gitlab.liu.se/eliro15/lbbd_instances.

References

  1. Atlihan, M.K., Schrage, L.: Generalized filtering algorithms for infeasibility analysis. Comput. Oper. Res. 35, 1446–1464 (2008). https://doi.org/10.1016/j.cor.2006.08.005

    Article  MathSciNet  MATH  Google Scholar 

  2. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4, 238–252 (1962). https://doi.org/10.1007/BF01386316

    Article  MathSciNet  MATH  Google Scholar 

  3. Benini, L., Lombardi, M., Mantovani, M., Milano, M., Ruggiero, M.: Multi-stage benders decomposition for optimizing multicore architectures. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 36–50. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68155-7_6

    Chapter  MATH  Google Scholar 

  4. Blikstad, M., Karlsson, E., Lööw, T., Rönnberg, E.: An optimisation approach for pre-runtime scheduling of tasks and communication in an integrated modular avionic system. Optim. Eng. 19(4), 977–1004 (2018). https://doi.org/10.1007/s11081-018-9385-6

    Article  MathSciNet  MATH  Google Scholar 

  5. Cambazard, H., Hladik, P.-E., Déplanche, A.-M., Jussien, N., Trinquet, Y.: Decomposition and learning for a hard real time task allocation problem. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 153–167. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8_14

    Chapter  MATH  Google Scholar 

  6. Chinneck, J.W., Dravnieks, E.W.: Locating minimal infeasible constraint sets in linear programs. ORSA J. Comput. 3, 157–168 (1991). https://doi.org/10.1287/ijoc.3.2.157

    Article  MATH  Google Scholar 

  7. Coban, E., Hooker, J.N.: Single-facility scheduling by logic-based Benders decomposition. Ann. Oper. Res. 210, 245–272 (2013). https://doi.org/10.1007/s10479-011-1031-z

    Article  MathSciNet  MATH  Google Scholar 

  8. Geoffrion, A.M.: Generalized Benders decomposition. J. Optim. Theory Appl. 10, 237–260 (1972). https://doi.org/10.1007/BF00934810

    Article  MathSciNet  MATH  Google Scholar 

  9. Hooker, J.N.: Logic-Based Methods for Optimization: Combining Optimization and Constraint Satisfaction. Wiley, Hoboken (2000). https://doi.org/10.1002/9781118033036

    Book  MATH  Google Scholar 

  10. Hooker, J.N.: Planning and scheduling by logic-based Benders decomposition. Oper. Res. 55, 588–602 (2007). https://doi.org/10.1287/opre.1060.0371

    Article  MathSciNet  MATH  Google Scholar 

  11. Hooker, J.N.: Logic-based benders decomposition for large-scale optimization. In: Velásquez-Bermúdez, J.M., Khakifirooz, M., Fathi, M. (eds.) Large Scale Optimization in Supply Chains and Smart Manufacturing. SOIA, vol. 149, pp. 1–26. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22788-3_1

    Chapter  Google Scholar 

  12. Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Math. Program. 96, 33–60 (2003). https://doi.org/10.1007/s10107-003-0375-9

    Article  MathSciNet  MATH  Google Scholar 

  13. Horn, M., Raidl, G.R., Rönnberg, E.: A* search for prize-collecting job sequencing with one common and multiple secondary resources. Ann. Oper. Res. (2020). https://doi.org/10.1007/s10479-020-03550-7

  14. Junker, U.: QuickXPlain: conflict detection for arbitrary constraint propagation algorithms. In: IJCAI01 Workshop on Modeling and Solving Problems with Constraints (CONS-1) (2001)

    Google Scholar 

  15. Junker, U.: QuickXPlain: preferred explanations and relaxations for over-constrained problems. In: Proceedings of AAAI 2004, pp. 167–172 (2004)

    Google Scholar 

  16. Karlsson, E., Rönnberg, E., Stenberg, A., Uppman, H.: A matheuristic approach to large-scale avionic scheduling. Ann. Oper. Res. (2020). https://doi.org/10.1007/s10479-020-03608-6

  17. Lam, E., Gange, G., Stuckey, P.J., Van Hentenryck, P., Dekker, J.J.: Nutmeg: a MIP and CP hybrid solver using branch-and-check. SN Oper. Res. Forum 1, 22:1–22:27 (2020). https://doi.org/10.1007/s43069-020-00023-2

  18. Lam, E., Van Hentenryck, P.: A branch-and-price-and-check model for the vehicle routing problem with location congestion. Constraints 21, 394–412 (2016). https://doi.org/10.1007/s10601-016-9241-2

    Article  MathSciNet  MATH  Google Scholar 

  19. Maschler, J., Riedler, M., Stock, M., Raidl, G.R.: Particle therapy patient scheduling: first heuristic approaches. In: Proceedings of the 11th International Conference of the Practice and Theory of Automated Timetabling, PATAT 2016, pp. 223–244 (2016)

    Google Scholar 

  20. Rahmaniani, R., Crainic, T.G., Gendreau, M., Rei, W.: The Benders decomposition algorithm: a literature review. Eur. J. Oper. Res. 259, 801–817 (2017). https://doi.org/10.1016/j.ejor.2016.12.005

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

Emil Karlsson is funded by the Research School in Interdisciplinary Mathematics at Linköping University. The work is also partly funded by the Center for Industrial Information Technology (CENIIT), Project-ID 16.05. Computational experiments were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at National Supercomputer Centre (NSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elina Rönnberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karlsson, E., Rönnberg, E. (2021). Strengthening of Feasibility Cuts in Logic-Based Benders Decomposition. In: Stuckey, P.J. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2021. Lecture Notes in Computer Science(), vol 12735. Springer, Cham. https://doi.org/10.1007/978-3-030-78230-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78230-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78229-0

  • Online ISBN: 978-3-030-78230-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics