Skip to main content

Principled Ultrasound Data Augmentation for Classification of Standard Planes

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12729)

Abstract

Deep learning models with large learning capacities often overfit to medical imaging datasets. This is because training sets are often relatively small due to the significant time and financial costs incurred in medical data acquisition and labelling. Data augmentation is therefore routinely used to expand the availability of training data and to increase generalization. However, augmentation strategies are often chosen on an ad-hoc basis without justification. In this paper, we present an augmentation policy search method with the goal of improving model classification performance. We include in the augmentation policy search additional transformations that are commonly used in medical image analysis and evaluate their performance. In addition, we extend the augmentation policy search to include non-linear mixed-example data augmentation strategies. Using these learned policies, we show that principled data augmentation for medical image model training can lead to significant improvements in ultrasound standard plane detection, with an average F1-score improvement of 7.0% overall over naive data augmentation strategies in ultrasound fetal standard plane classification. We find that the learned representations of ultrasound images are better clustered and defined with optimized data augmentation.

Keywords

  • Data augmentation
  • Deep learning
  • Fetal ultrasound

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-78191-0_56
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-78191-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. Zaman, A., Park, S.H., Bang, H., Park, C., Park, I., Joung, S.: Generative approach for data augmentation for deep learning-based bone surface segmentation from ultrasound images. Int. J. Comput. Assist. Radiol. Surg. 15(6), 931–941 (2020). https://doi.org/10.1007/s11548-020-02192-1

    CrossRef  Google Scholar 

  2. Bargsten, L., Schlaefer, A.: Specklegan: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing. In: ICARS (2020)

    Google Scholar 

  3. Baumgartner, C.F., et al.: SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound. In: IEEE TMI (2017)

    Google Scholar 

  4. Buslaev, A., Iglovikov, V.I., et al.: Albumentations: Fast and flexible image augmentations. MDPI (2020)

    Google Scholar 

  5. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: learning augmentation strategies from data. In: CVPR (2019)

    Google Scholar 

  6. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: CVPR (2020)

    Google Scholar 

  7. Droste, R., et al.: Ultrasound image representation learning by modeling sonographer visual attention. IPMI (2019)

    Google Scholar 

  8. Dubost, F., Bortsova, G., Adams, H., Ikram, M.A., Niessen, W., Vernooij, M., de Bruijne, M.: Hydranet: data augmentation for regression neural networks. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 438–446. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_48

    CrossRef  Google Scholar 

  9. Eaton-Rosen, Z., Bragman, F., et al.: Improving data augmentation for medical image segmentation. In: MIDL (2018)

    Google Scholar 

  10. Frid-Adar, M., Diamant, I., et al.: Gan-based synthetic medical image augmentation for increased cnn performance in liver lesion classification. Neurocomputing (2018)

    Google Scholar 

  11. Gan, Z., Henao, R., Carlson, D., Carin, L.: Learning deep sigmoid belief networks with data augmentation. In: Proceedings of Machine Learning Research (PMLR) (2015)

    Google Scholar 

  12. Gontijo-Lopes, R., Smullin, S.J., Cubuk, E.D., Dyer, E.: Affinity and diversity: quantifying mechanisms of data augmentation (2020)

    Google Scholar 

  13. Ho, D., Liang, E., et al.: Population based augmentation: efficient learning of augmentation policy schedules. In: ICML (2019)

    Google Scholar 

  14. Hu, J., et al.: Squeeze-and-excitation networks. In: IPAMI (2020)

    Google Scholar 

  15. Hussain, Z., Gimenez, F., Yi, D., Rubin, D.: Differential data augmentation techniques for medical imaging classification tasks. AMIA (2017)

    Google Scholar 

  16. Jiao, J., et al.: Self-supervised representation learning for ultrasound video. In: IEEE 17th International Symposium on Biomedical Imaging (2020)

    Google Scholar 

  17. Jin, D., Xu, Z., Tang, Y., Harrison, A.P., Mollura, D.J.: CT-realistic lung nodule simulation from 3D conditional generative adversarial networks for robust lung segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 732–740. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_81

    CrossRef  Google Scholar 

  18. Lim, S., Kim, I., Kim, T., Kim, C., Kim, S.: Fast autoaugment. In: Advances in Neural Information Processing Systems (NeurIPs) (2019)

    Google Scholar 

  19. Luke, T., Geoff, N.: Improving deep learning using generic data augmentation. In: IEEE Symposium Series on Computational Intelligence (2018)

    Google Scholar 

  20. Nalepa, J., et al.: Data augmentation via image registration. In: ICIP (2019)

    Google Scholar 

  21. Ohno, H.: Auto-encoder-based generative models for data augmentation on regression problems (2019)

    Google Scholar 

  22. Ryo, T., Takashi, M.: Data augmentation using random image cropping and patches for deep CNNs. In: IEEE TCSVT (2020)

    Google Scholar 

  23. Summers, C., Dinneen, M.J.: Improved mixed-example data augmentation. In: IEEE Winter Conference on Applications of Computer Vision (WACV) (2019)

    Google Scholar 

  24. Tokozume, Y., Ushiku, Y., Harada, T.: Between-class learning for image classification. In: CVPR (2018)

    Google Scholar 

  25. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: ICLR (2018)

    Google Scholar 

  26. Zhao, A., Balakrishnan, G., et al.: Data augmentation using learned transformations for one-shot medical image segmentation. In: CVPR (2019)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the Croucher Foundation, ERC (ERC-ADG-2015 694 project PULSE), the EPSRC (EP/R013853/1, EP/T028572/1) and the MRC (MR/P027938/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lok Hin Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Lee, L.H., Gao, Y., Noble, J.A. (2021). Principled Ultrasound Data Augmentation for Classification of Standard Planes. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds) Information Processing in Medical Imaging. IPMI 2021. Lecture Notes in Computer Science(), vol 12729. Springer, Cham. https://doi.org/10.1007/978-3-030-78191-0_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78191-0_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78190-3

  • Online ISBN: 978-3-030-78191-0

  • eBook Packages: Computer ScienceComputer Science (R0)