Skip to main content

Representation Disentanglement for Multi-modal Brain MRI Analysis

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2021)

Abstract

Multi-modal MRIs are widely used in neuroimaging applications since different MR sequences provide complementary information about brain structures. Recent works have suggested that multi-modal deep learning analysis can benefit from explicitly disentangling anatomical (shape) and modality (appearance) information into separate image presentations. In this work, we challenge mainstream strategies by showing that they do not naturally lead to representation disentanglement both in theory and in practice. To address this issue, we propose a margin loss that regularizes the similarity in relationships of the representations across subjects and modalities. To enable robust training, we further use a conditional convolution to design a single model for encoding images of all modalities. Lastly, we propose a fusion function to combine the disentangled anatomical representations as a set of modality-invariant features for downstream tasks. We evaluate the proposed method on three multi-modal neuroimaging datasets. Experiments show that our proposed method can achieve superior disentangled representations compared to existing disentanglement strategies. Results also indicate that the fused anatomical representation has potential in the downstream task of zero-dose PET reconstruction and brain tumor segmentation. The code is available at https://github.com/ouyangjiahong/representation-disentanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    NCANDA_PUBLIC_4Y_STRUCTURAL_V01 (DOI: https://doi.org/10.7303/syn22216457); collection was supported by NIH grants AA021697, AA021695, AA021692, AA021696, AA021681, AA021690, and AA02169.

References

  1. Benaim, S., Khaitov, M., Galanti, T., Wolf, L.: Domain intersection and domain difference. In: ICCV, pp. 3445–3453 (2019)

    Google Scholar 

  2. Chartsias, A., et al.: Disentangle, align and fuse for multimodal and zero-shot image segmentation. IEEE Trans. Med. Imaging (2020)

    Google Scholar 

  3. Denton, E.L., et al.: Unsupervised learning of disentangled representations from video. NeurIPS 30, 4414–4423 (2017)

    Google Scholar 

  4. Dewey, B.E., et al.: A disentangled latent space for cross-site MRI harmonization. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 720–729. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_70

    Chapter  Google Scholar 

  5. Frome, A., et al.: Devise: a deep visual-semantic embedding model. In: NeurIPS, pp. 2121–2129 (2013)

    Google Scholar 

  6. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: ECCV, pp. 172–189 (2018)

    Google Scholar 

  7. Lee, D., Kim, J., Moon, W.J., Ye, J.C.: Collagan: collaborative GAN for missing image data imputation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2487–2496 (2019)

    Google Scholar 

  8. Lee, H.Y., Tseng, H.Y., Huang, J.B., Singh, M., Yang, M.H.: Diverse image-to-image translation via disentangled representations. In: ECCV, pp. 35–51 (2018)

    Google Scholar 

  9. Liu, Y., Wang, Z., Jin, H., Wassell, I.: Multi-task adversarial network for disentangled feature learning. In: CVPR, pp. 3743–3751 (2018)

    Google Scholar 

  10. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  11. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  12. Ouyang, J., Chen, K., Zaharchuk, G.: Zero-dose pet reconstruction with missing input by U-net with attention modules. In: Medical Imaging Meets NeurIPS (2020)

    Google Scholar 

  13. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR, pp. 2337–2346 (2019)

    Google Scholar 

  14. Qin, C., Shi, B., Liao, R., Mansi, T., Rueckert, D., Kamen, A.: Unsupervised deformable registration for multi-modal images via disentangled representations. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 249–261. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_19

    Chapter  Google Scholar 

  15. Shen, L., et al.: Multi-domain image completion for random missing input data. arXiv preprint arXiv:2007.05534 (2020)

  16. Yang, B., Bender, G., Le, Q.V., Ngiam, J.: Condconv: conditionally parameterized convolutions for efficient inference. In: NeurIPS, pp. 1307–1318 (2019)

    Google Scholar 

  17. Yang, J., et al.: Cross-modality segmentation by self-supervised semantic alignment in disentangled content space. In: Albarqouni, S., et al. (eds.) DART/DCL -2020. LNCS, vol. 12444, pp. 52–61. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_6

    Chapter  Google Scholar 

  18. Zhao, Q., Adeli, E., Pfefferbaum, A., Sullivan, E.V., Pohl, K.M.: Confounder-aware visualization of ConvNets. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 328–336. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_38

    Chapter  Google Scholar 

  19. Zhao, Q., et al.: Association of heavy drinking with deviant fiber tract development in frontal brain systems in adolescents. JAMA psychiatry 78(4), 407–415 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH funding AA021697 and by the Stanford HAI AWS Cloud Credit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahong Ouyang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ouyang, J., Adeli, E., Pohl, K.M., Zhao, Q., Zaharchuk, G. (2021). Representation Disentanglement for Multi-modal Brain MRI Analysis. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds) Information Processing in Medical Imaging. IPMI 2021. Lecture Notes in Computer Science(), vol 12729. Springer, Cham. https://doi.org/10.1007/978-3-030-78191-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78191-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78190-3

  • Online ISBN: 978-3-030-78191-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics