Skip to main content

Equivariant Spherical Deconvolution: Learning Sparse Orientation Distribution Functions from Spherical Data

  • Conference paper
  • First Online:
Book cover Information Processing in Medical Imaging (IPMI 2021)

Abstract

We present a rotation-equivariant self-supervised learning framework for the sparse deconvolution of non-negative scalar fields on the unit sphere. Spherical signals with multiple peaks naturally arise in Diffusion MRI (dMRI), where each voxel consists of one or more signal sources corresponding to anisotropic tissue structure such as white matter. Due to spatial and spectral partial voluming, clinically-feasible dMRI struggles to resolve crossing-fiber white matter configurations, leading to extensive development in spherical deconvolution methodology to recover underlying fiber directions. However, these methods are typically linear and struggle with small crossing-angles and partial volume fraction estimation. In this work, we improve on current methodologies by nonlinearly estimating fiber structures via self-supervised spherical convolutional networks with guaranteed equivariance to spherical rotation. We perform validation via extensive single and multi-shell synthetic benchmarks demonstrating competitive performance against common baselines. We further show improved downstream performance on fiber tractography measures on the Tractometer benchmark dataset. Finally, we show downstream improvements in terms of tractography and partial volume estimation on a multi-shell dataset of human subjects.

A. Elaldi and N. Dey—these authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Contemporaneously to our work, [12] presents networks equivariant to spatial roto-translations and voxel-wise rotations with applications to dMRI lesion segmentation.

References

  1. Canales-Rodríguez, E.J., Legarreta, J.H., Pizzolato, M., Rensonnet, G., Girard, G., et al.: Sparse wars: a survey and comparative study of spherical deconvolution algorithms for diffusion MRI. NeuroImage 184, 140–160 (2019)

    Article  Google Scholar 

  2. Cohen, T., Welling, M.: Group equivariant convolutional networks. In: International Conference on Machine Learning, pp. 2990–2999 (2016)

    Google Scholar 

  3. Cohen, T.S., Geiger, M., Köhler, J., Welling, M.: Spherical CNNs. In: International Conference on Learning Representations (2018)

    Google Scholar 

  4. Daducci, A., Canales-Rodrıguez, E.J., Descoteaux, M., Garyfallidis, E., Gur, Y., et al.: Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI. IEEE Trans. Med. Imaging 33(2), 384–399 (2013)

    Article  Google Scholar 

  5. Gorski, K.M., Wandelt, B.D., Hansen, F.K., Hivon, E., Banday, A.J.: The HEALPix primer. arXiv preprint arXiv:astro-ph/9905275 (1999)

  6. Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers, J.: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage 103, 411–426 (2014)

    Article  Google Scholar 

  7. Karimi, D., Vasung, L., Jaimes, C., Machado-Rivas, F., Khan, S., et al.: A machine learning-based method for estimating the number and orientations of major fascicles in diffusion-weighted magnetic resonance imaging (2020)

    Google Scholar 

  8. Lin, Z., et al.: Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network. Med. Phys. 46(7), 3101–3116 (2019)

    Article  Google Scholar 

  9. Liu, C., Wang, D., Wang, T., Feng, F., Wang, Y.: Multichannel sparse deconvolution of seismic data with shearlet-Cauchy constrained inversion. J. Geophys. Eng. 14(5), 1275–1282 (2017)

    Article  Google Scholar 

  10. Lucena, O., Vos, S.B., Vakharia, V., Duncan, J., Ashkan, K., et al.: Using convolution neural networks to learn enhanced fiber orientation distribution models from commercially available diffusion magnetic resonance imaging (2020)

    Google Scholar 

  11. Maier-Hein, K.H., Neher, P.F., Houde, J.C., Côté, M.A., Garyfallidis, E., et al.: The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8(1), 1–13 (2017)

    Article  Google Scholar 

  12. Müller, P., Golkov, V., Tomassini, V., Cremers, D.: Rotation-equivariant deep learning for diffusion MRI. arXiv preprint arXiv:2102.06942 (2021)

  13. Nath, V., Schilling, K.G., Parvathaneni, P., Hansen, C.B., Hainline, A.E., et al.: Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted MRI. Magn. Reson. Imaging 62, 220–227 (2019)

    Article  Google Scholar 

  14. Patel, K., Groeschel, S., Schultz, T.: Better fiber ODFs from suboptimal data with autoencoder based regularization. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 55–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_7

    Chapter  Google Scholar 

  15. Perraudin, N., Defferrard, M., Kacprzak, T., Sgier, R.: DeepSphere: efficient spherical convolutional neural network with HEALPix sampling for cosmological applications. Astron. Comput. 27, 130–146 (2019)

    Article  Google Scholar 

  16. Sedlar, S., Papadopoulo, T., Deriche, R., Deslauriers-Gauthier, S.: Diffusion MRI fiber orientation distribution function estimation using voxel-wise spherical U-net. In: Computational Diffusion MRI, MICCAI Workshop (2020)

    Google Scholar 

  17. Tong, Q., He, H., Gong, T., Li, C., et al.: Multicenter dataset of multi-shell diffusion MRI in healthy traveling adults with identical settings. Sci. Data 7, 157 (2020)

    Article  Google Scholar 

  18. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4), 1459–1472 (2007)

    Article  Google Scholar 

  19. Tournier, J.D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., et al.: Mrtrix3: a fast, flexible and open software framework for medical image processing and visualisation. NeuroImage 202, 116137 (2019)

    Article  Google Scholar 

  20. Wedeen, V., et al.: Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI. In: Proceedings of the 8th Annual Meeting of ISMRM (2000)

    Google Scholar 

  21. Yan, H., Carmichael, O., Paul, D., Peng, J., et al.: Estimating fiber orientation distribution from diffusion MRI with spherical needlets. Med. Image Anal. 46, 57–72 (2018)

    Article  Google Scholar 

  22. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

Supported by NIH 1R01DA038215-01A1, R01-HD055741-12, 1R01HD088125-01A1, 1R01MH118362-01, R01ES032294, R01MH122447, and 1R34DA050287.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Elaldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elaldi, A., Dey, N., Kim, H., Gerig, G. (2021). Equivariant Spherical Deconvolution: Learning Sparse Orientation Distribution Functions from Spherical Data. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds) Information Processing in Medical Imaging. IPMI 2021. Lecture Notes in Computer Science(), vol 12729. Springer, Cham. https://doi.org/10.1007/978-3-030-78191-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78191-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78190-3

  • Online ISBN: 978-3-030-78191-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics