Skip to main content

Role of Dietary Nutrition, Vitamins, Nutrients, and Supplements in Cardiovascular Health

  • Chapter
  • First Online:
Prevention and Treatment of Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Supplement use remains common in USA, primarily due to public interest in improving health and well-being. Vitamins, minerals, and macronutrient supplement formulations remain some of the most commonly used; however, few have been systematically studied regarding their role in promoting cardiovascular health. Fairly consistently, diets rich in many of these compounds have been found in epidemiologic studies to confer benefit; however, existing interventional or cohort studies generally have failed to find pervasive evidence of benefit with some exception. Notably, the heterogeneity of different compounds is paralleled by the heterogeneity of studies, with differing formulations, dosing, populations studied, and outcomes limiting interpretation and generalizability. Still, both consumer and research interest remain strong in evaluating the impact these supplements have on improving cardiovascular health. This chapter will outline existing literature for some of the most commonly used supplements, including major limitations—and promise—for the use of these supplements in populations with average and elevated risk for cardiovascular disease and outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bailey RL, Gahche JJ, Miller PE, Thomas PR, Dwyer JT. Why US adults use dietary supplements. JAMA Intern Med. 2013;173(5):355–61. https://doi.org/10.1001/jamainternmed.2013.2299.

    Article  CAS  PubMed  Google Scholar 

  2. Law MR, Morris JK. By how much does fruit and vegetable consumption reduce the risk of ischaemic heart disease? Eur J Clin Nutr. 1998;52(8):549–56. https://doi.org/10.1038/sj.ejcn.1600603.

    Article  CAS  PubMed  Google Scholar 

  3. Fortmann SP, Burda BU, Senger CA, Lin JS, Whitlock EP. Vitamin and mineral supplements in the primary prevention of cardiovascular disease and cancer: an updated systematic evidence review for the U.S. preventive services task force. Ann Intern Med. 2013;159(12):824–34. https://doi.org/10.7326/0003-4819-159-12-201312170-00729.

    Article  PubMed  Google Scholar 

  4. Bleys J, Miller ER, Pastor-Barriuso R, Appel LJ, Guallar E. Vitamin-mineral supplementation and the progression of atherosclerosis: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2006;84(4):880–7. https://doi.org/10.1093/ajcn/84.4.880.

    Article  CAS  PubMed  Google Scholar 

  5. Hercberg S, Galan P, Preziosi P, et al. The SU.VI.MAX study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch Intern Med. 2004;164(21):2335–42. https://doi.org/10.1001/archinte.164.21.2335.

    Article  CAS  PubMed  Google Scholar 

  6. Gaziano JM, Sesso HD, Christen WG, et al. Multivitamins in the prevention of cancer in men: the physicians’ health study II randomized controlled trial. J Am Med Assoc. 2012;308(18):1871–80. https://doi.org/10.1001/jama.2012.14641.

    Article  CAS  Google Scholar 

  7. Christen WG, Cook NR, Van Denburgh M, Zaharris E, Albert CM, Manson JAE. Effect of combined treatment with folic acid, vitamin B6, and vitamin B12 on plasma biomarkers of inflammation and endothelial dysfunction in women. J Am Heart Assoc. 2018;7(11); https://doi.org/10.1161/JAHA.117.008517.

  8. Hosseini B, Saedisomeolia A, Skilton MR. Association between micronutrients intake/status and carotid intima media thickness: a systematic review. J Acad Nutr Diet. 2017;117(1):69–82. https://doi.org/10.1016/j.jand.2016.09.031.

    Article  PubMed  Google Scholar 

  9. Huo Y, Li J, Qin X, et al. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: the CSPPT randomized clinical trial. J Am Med Assoc. 2015;313(13):1325–35. https://doi.org/10.1001/jama.2015.2274.

    Article  CAS  Google Scholar 

  10. Davey Smith G, Ebrahim S. Folate supplementation and cardiovascular disease. Lancet. 2005;366(9498):1679–81. https://doi.org/10.1016/S0140-6736(05)67676-3.

    Article  PubMed  Google Scholar 

  11. Dinicolantonio JJ, Niazi AK, Lavie CJ, O’Keefe JH, Ventura HO. Thiamine supplementation for the treatment of heart failure: a review of the literature. Congest Hear Fail. 2013;19(4):214–22. https://doi.org/10.1111/chf.12037.

    Article  CAS  Google Scholar 

  12. DiNicolantonio JJ, Lavie CJ, Niazi AK, O’Keefe JH, Hu T. Effects of thiamine on cardiac function in patients with systolic heart failure: systematic review and metaanalysis of randomized, double-blind, placebo-controlled trials. Ochsner J. 2013;13(4):495–9. Accessed 31 Aug 2020. /pmc/articles/PMC3865826/?report=abstract

    PubMed  PubMed Central  Google Scholar 

  13. Chen YQ, Zhao SP, Zhao YH. Efficacy and tolerability of coenzyme a vs pantethine for the treatment of patients with hyperlipidemia: a randomized, double-blind, multicenter study. J Clin Lipidol. 2015;9(5):692–7. https://doi.org/10.1016/j.jacl.2015.07.003.

    Article  PubMed  Google Scholar 

  14. Lloyd-Jones DM. Niacin and HDL cholesterol - time to face facts. N Engl J Med. 2014;371(3):271–3. https://doi.org/10.1056/NEJMe1406410.

    Article  CAS  PubMed  Google Scholar 

  15. Stamler J. Clofibrate and niacin in coronary heart disease. J Am Med Assoc. 1975;231(4):360–81. https://doi.org/10.1001/jama.1975.03240160024021.

    Article  Google Scholar 

  16. Prineas RJ, Friedewald W. Fifteen year mortality in coronary drug project patients: long-term benefit with niacin. J Am Coll Cardiol. 1986;8(6):1245–55. https://doi.org/10.1016/S0735-1097(86)80293-5.

    Article  PubMed  Google Scholar 

  17. Burton E, Lewin G, O’Connell H, Petrich M, Boyle E, Hill KD. Can community care workers deliver a falls prevention exercise program? A feasibility study. Clin Interv Aging. 2018;13:485–95. https://doi.org/10.2147/CIA.S162728.

    Article  PubMed  PubMed Central  Google Scholar 

  18. D’Alonzo KT, Smith BA, Dicker LH. Outcomes of a culturally tailored partially randomized patient preference controlled trial to increase physical activity among low-income immigrant Latinas. J Transcult Nurs. Published online July 27. 2017; https://doi.org/10.1177/1043659617723073.

  19. Ingles DP, Cruz Rodriguez JB, Garcia H. Supplemental vitamins and minerals for cardiovascular disease prevention and treatment. Curr Cardiol Rep. 2020;22(4):1–8. https://doi.org/10.1007/s11886-020-1270-1.

    Article  Google Scholar 

  20. Knekt P, Ritz J, Pereira MA, et al. Antioxidant vitamins and coronary heart disease risk: a pooled analysis of 9 cohorts. Am J Clin Nutr. 2004;80(6):1508–20. https://doi.org/10.1093/ajcn/80.6.1508.

    Article  CAS  PubMed  Google Scholar 

  21. Frei B, England L, Ames BN. Ascorbate is an outstanding antioxidant in human blood plasma (oxidant stress/lipid peroxidation/protein Thiols/a-Tocopherol). Proc Nati Acad Sci USA. 1989;86:6377–81. PMID is 2762330.

    Google Scholar 

  22. Honarbakhsh S, Schachter M. Vitamins and cardiovascular disease. Br J Nutr. 2009;101(8):1113–31. https://doi.org/10.1017/S000711450809123X.

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Schellhorn HE. New developments and novel therapeutic perspectives for vitamin C. J Nutr. 2007;137(10):2171–84. https://doi.org/10.1093/jn/137.10.2171.

    Article  CAS  PubMed  Google Scholar 

  24. Osganian SK, Stampfer MJ, Rimm E, et al. Vitamin C and risk of coronary heart disease in women. J Am Coll Cardiol. 2003;42(2):246–52. https://doi.org/10.1016/S0735-1097(03)00575-8.

    Article  CAS  PubMed  Google Scholar 

  25. Sesso HD, Christen WG, Bubes V, et al. Multivitamins in the prevention of cardiovascular disease in men: the physicians’ health study II randomized controlled trial. J Am Med Assoc. 2012;308(17):1751–60. https://doi.org/10.1001/jama.2012.14805.

    Article  CAS  Google Scholar 

  26. Sesso HD, Buring JE, Christen WG, et al. Vitamins E and C in the prevention of cardiovascular disease in men: the physicians’ health study II randomized controlled trial. J Am Med Assoc. 2008;300(18):2123–33. https://doi.org/10.1001/jama.2008.600.

    Article  CAS  Google Scholar 

  27. Cook NR, Albert CM, Gaziano JM, et al. A randomized factorial trial of vitamins C and E and beta carotene in the secondary prevention of cardiovascular events in women: results from the women’s antioxidant cardiovascular study. Arch Intern Med. 2007;167(15):1610–8. https://doi.org/10.1001/archinte.167.15.1610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Salonen JT, Nyyssönen K, Salonen R, et al. Antioxidant supplementation in atherosclerosis prevention (ASAP) study: a randomized trial of the effect of vitamins E and C on 3-year progression of carotid atherosclerosis. J Intern Med. 2000;248(5):377–86. https://doi.org/10.1046/j.1365-2796.2000.00752.x.

    Article  CAS  PubMed  Google Scholar 

  29. Al-Khudairy L, Flowers N, Wheelhouse R, et al. Vitamin C supplementation for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2017;(3): https://doi.org/10.1002/14651858.CD011114.pub2.

  30. Coates PM, Betz JM, Blackman MR, et al. Encyclopedia of dietary supplements. 2nd ed. Informa Healthcare. New York, NY; 2010.

    Google Scholar 

  31. Dietary reference intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. National Academies Press; 2000. https://doi.org/10.17226/9810.

  32. Voutilainen S, Nurmi T, Mursu J, Rissanen TH. Carotenoids and cardiovascular health. Am J Clin Nutr. 2006;83(6):1265–71. https://doi.org/10.1093/ajcn/83.6.1265.

    Article  CAS  PubMed  Google Scholar 

  33. Rapola JM, Virtamo J, Ripatti S, et al. Randomised trial of α-tocopherol and β-carotene supplements on incidence of major coronary events in men with previous myocardial infarction. Lancet. 1997;349(9067):1715–20. https://doi.org/10.1016/S0140-6736(97)01234-8.

    Article  CAS  PubMed  Google Scholar 

  34. Greenberg ER. Mortality associated with low plasma concentration of beta carotene and the effect of oral supplementation. J Am Med Assoc. 1996;275(9):699. https://doi.org/10.1001/jama.1996.03530330043027.

    Article  CAS  Google Scholar 

  35. Omenn GS, Goodman GE, Thornquist MD, et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med. 1996;334(18):1150–5. https://doi.org/10.1056/NEJM199605023341802.

    Article  CAS  PubMed  Google Scholar 

  36. Lichtenstein AH. Nutrient supplements and cardiovascular disease: a heartbreaking story. J Lipid Res. 2009;50(SUPPL):S429. https://doi.org/10.1194/jlr.R800027-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tavani A, La Vecchia C. β-Carotene and risk of coronary heart disease. A review of observational and intervention studies. Biomed Pharmacother. 1999;53(9):409–16. https://doi.org/10.1016/S0753-3322(99)80120-6.

    Article  CAS  PubMed  Google Scholar 

  38. Moyer VA. Vitamin, mineral, and multivitamin supplements for the primary prevention of cardiovascular disease and cancer: U.S. preventive services task force recommendation statement. Ann Intern Med. 2014;160(8):558–64. https://doi.org/10.7326/M14-0198.

    Article  PubMed  Google Scholar 

  39. Holick MF, Vitamin D. Deficiency. N Engl J Med. 2007;357(3):266–81. https://doi.org/10.1056/NEJMra070553.

    Article  CAS  PubMed  Google Scholar 

  40. Zittermann A, Schleithoff SS, Koerfer R. Putting cardiovascular disease and vitamin D insufficiency into perspective. Br J Nutr. 2005;94(4):483–92. https://doi.org/10.1079/bjn20051544.

    Article  CAS  PubMed  Google Scholar 

  41. Khaw KT, Luben R, Wareham N. Serum 25-hydroxyvitamin D, mortality, and incident cardiovascular disease, respiratory disease, cancers, and fractures: a 13-y prospective population study. Am J Clin Nutr. 2014;100(5):1361–70. https://doi.org/10.3945/ajcn.114.086413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shaper AG, Pocock SJ, Walker M, Cohen NM, Wale CJ, Thomson AG. British regional heart study: cardiovascular risk factors in middle-aged men in 24 towns. Br Med J (Clin Res Ed). 1981;283(6285):179–86. https://doi.org/10.1136/bmj.283.6285.179.

    Article  CAS  Google Scholar 

  43. Wang L, Ma J, Manson JE, Buring JE, Gaziano JM, Sesso HD. A prospective study of plasma vitamin D metabolites, vitamin D receptor gene polymorphisms, and risk of hypertension in men. Eur J Nutr. 2013;52(7):1771–9. https://doi.org/10.1007/s00394-012-0480-8.

    Article  CAS  PubMed  Google Scholar 

  44. Pfeifer M, Begerow B, Minne HW, et al. Vitamin D status, trunk muscle strength, body sway, falls, and fractures among 237 postmenopausal women with osteoporosis. Exp Clin Endocrinol Diabetes. 2001;109(2):87–92. https://doi.org/10.1055/s-2001-14831.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang D, Cheng C, Wang Y, et al. Effect of vitamin D on blood pressure and hypertension in the general population: an update meta-analysis of cohort studies and randomized controlled trials. Prev Chronic Dis. 2020;17:190307. https://doi.org/10.5888/pcd17.190307.

    Article  Google Scholar 

  46. Timms PM, Mannan N, Hitman GA, et al. Circulating MMP9, vitamin D and variation in the TIMP-1 response with VDR genotype: mechanisms for inflammatory damage in chronic disorders? QJM. 2002;95(12):787–96. https://doi.org/10.1093/qjmed/95.12.787.

    Article  CAS  PubMed  Google Scholar 

  47. LaCroix AZ, Kotchen J, Anderson G, et al. Calcium plus vitamin D supplementation and mortality in postmenopausal women: the women’s health initiative calcium-vitamin D randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2009;64(5):559–67. https://doi.org/10.1093/gerona/glp006.

    Article  CAS  PubMed  Google Scholar 

  48. Scragg R, Stewart AW, Waayer D, et al. Effect of monthly high-dose vitamin D supplementation on cardiovascular disease in the vitamin D assessment study: a randomized clinical trial. JAMA Cardiol. 2017;2(6):608–16. https://doi.org/10.1001/jamacardio.2017.0175.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Manson JE, Cook NR, Lee I-M, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2019;380(1):33–44. https://doi.org/10.1056/NEJMoa1809944.

    Article  CAS  PubMed  Google Scholar 

  50. Wang X, Quinn PJ. Vitamin E and its function in membranes. Prog Lipid Res. 1999;38(4):309–36. https://doi.org/10.1016/S0163-7827(99)00008-9.

    Article  CAS  PubMed  Google Scholar 

  51. Berliner JA, Navab M, Fogelman AM, et al. Atherosclerosis: basic mechanisms. Circulation. 1995;91(9):2488–96. https://doi.org/10.1161/01.CIR.91.9.2488.

    Article  CAS  PubMed  Google Scholar 

  52. Witztum JL. The oxidation hypothesis of atherosclerosis. Lancet. 1994;344(8925):793–5. https://doi.org/10.1016/S0140-6736(94)92346-9.

    Article  CAS  PubMed  Google Scholar 

  53. Glynn RJ, Ridker PM, Goldhaber SZ, Zee RYL, Buring JE. Effects of random allocation to vitamin E supplementation on the occurrence of venous thromboembolism: report from the women’s health study. Circulation. 2007;116(13):1497–503. https://doi.org/10.1161/CIRCULATIONAHA.107.716407.

    Article  CAS  PubMed  Google Scholar 

  54. Stampfer MJ, Hennekens CH, Manson JE, Colditz GA, Rosner B, Willett WC. Vitamin E consumption and the risk of coronary disease in women. N Engl J Med. 1993;328(20):1444–9. https://doi.org/10.1056/NEJM199305203282003.

    Article  CAS  PubMed  Google Scholar 

  55. Rimm EB, Stampfer MJ, Ascherio A, Giovannucci E, Colditz GA, Willett WC. Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med. 1993;328(20):1450–6. https://doi.org/10.1056/NEJM199305203282004.

    Article  CAS  PubMed  Google Scholar 

  56. Lee IM, Cook NR, Gaziano JM, et al. Vitamin E in the primary prevention of cardiovascular disease and cancer. The women’s health study: a randomized controlled trial. J Am Med Assoc. 2005;294(1):56–65. https://doi.org/10.1001/jama.294.1.56.

    Article  CAS  Google Scholar 

  57. Demaio SJ, King SB, Lembo NJ, et al. Vitamin E supplementation, plasma lipids and incidence of restenosis after percutaneous transluminal coronary angioplasty (PTCA). https://doi.org/10.1080/07315724.1992.10718198.

  58. Lonn E. Effects of long-term Vitamin E supplementation on cardiovascular events and Cancer. JAMA. 2005;293(11):1338. https://doi.org/10.1001/jama.293.11.1338.

    Article  PubMed  Google Scholar 

  59. Yusuf S. Vitamin E supplementation and cardiovascular events in high-risk patients. N Engl J Med. 2000;342(3):154–60. https://doi.org/10.1056/NEJM200001203420302.

    Article  CAS  PubMed  Google Scholar 

  60. Pacana T, Sanyal AJ. Vitamin E and nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care. 2012;15(6):641–8. https://doi.org/10.1097/MCO.0b013e328357f747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, Vitamin E, or placebo for nonalcoholic Steatohepatitis. N Engl J Med. 2010;362(18):1675–85. https://doi.org/10.1056/NEJMoa0907929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Thendiono E. IDDF2018-ABS-0025 the effect of vitamin e (mixed tocotrienol) on the liver stiffness measurement measured by transient elastography (FIBROSCAN) among nafld patients. Gut. 2018;67:A89.2–A90. https://doi.org/10.1136/gutjnl-2018-iddfabstracts.189.

    Article  Google Scholar 

  63. Klein EA, Thompson IM, Tangen CM, et al. Vitamin E and the risk of prostate cancer: the selenium and vitamin E cancer prevention trial (SELECT). J Am Med Assoc. 2011;306(14):1549–56. https://doi.org/10.1001/jama.2011.1437.

    Article  CAS  Google Scholar 

  64. Luo G, Ducy P, McKee MD, et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature. 1997;386(6620):78–81. https://doi.org/10.1038/386078a0.

    Article  CAS  PubMed  Google Scholar 

  65. Tsugawa N. Cardiovascular diseases and fat soluble Vitamins: Vitamin D and Vitamin K. J Nutr Sci Vitaminol (Tokyo). 2015;61:S170–2.

    Article  CAS  Google Scholar 

  66. Shea MK, Booth SL, Miller ME, et al. Association between circulating vitamin K1 and coronary calcium progression in community-dwelling adults: the multi-ethnic study of atherosclerosis. Am J Clin Nutr. 2013;98(1):197–208. https://doi.org/10.3945/ajcn.112.056101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shea MK, O’Donnell CJ, Hoffmann U, et al. Vitamin K supplementation and progression of coronary artery calcium in older men and women. Am J Clin Nutr. 2009;89(6):1799–807. https://doi.org/10.3945/ajcn.2008.27338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. van Ballegooijen AJ, Beulens JW. The role of Vitamin K status in cardiovascular health: evidence from observational and clinical studies. Curr Nutr Rep. 2017;6(3):197–205. https://doi.org/10.1007/s13668-017-0208-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Knapen MH, Braam LA, Drummen NE, Bekers O, Hoeks APG, Vermeer C. Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women a double-blind randomised clinical trial. Thromb Haemost. 2015;113. https://doi.org/10.1160/TH14-08-0675.

  70. Geleijnse JM, Vermeer C, Grobbee DE, et al. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam study. J Nutr. 2004;134(11):3100–5. https://doi.org/10.1093/jn/134.11.3100.

    Article  CAS  PubMed  Google Scholar 

  71. Gast GCM, de Roos NM, Sluijs I, et al. A high menaquinone intake reduces the incidence of coronary heart disease. Nutr Metab Cardiovasc Dis. 2009;19(7):504–10. https://doi.org/10.1016/j.numecd.2008.10.004.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang S, Guo L, Bu C. Vitamin K status and cardiovascular events or mortality: a meta-analysis. Eur J Prev Cardiol. 2019;26(5):549–53. https://doi.org/10.1177/2047487318808066.

    Article  PubMed  Google Scholar 

  73. Shea MK, Barger K, Booth SL, et al. Vitamin K status, cardiovascular disease, and all-cause mortality: a participant-level meta-analysis of 3 US cohorts. Am J Clin Nutr. 2020;111(6):1170–7. https://doi.org/10.1093/ajcn/nqaa082.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Institute of Medicine. Dietary reference intakes: the essential guide to nutrient requirements; 2006. https://doi.org/10.17226/11537.

  75. Office of Dietary Supplements. Zinc - health professional fact sheet. Accessed 31 Aug 2020. https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/

  76. Choi S, Liu X, Pan Z. Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol Sin. 2018;39:1120–32. https://doi.org/10.1038/aps.2018.25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Prasad AS. Zinc is an antioxidant and anti-inflammatory agent: its role in human health. Front Nutr. 2014;1. https://doi.org/10.3389/fnut.2014.00014.

  78. Eide DJ. The oxidative stress of zinc deficiency. Metallomics. 2011;3(11):1124–9. https://doi.org/10.1039/c1mt00064k.

    Article  CAS  Google Scholar 

  79. Bonaventura P, Benedetti G, Albarède F, Miossec P. Zinc and its role in immunity and inflammation. Autoimmun Rev. 2015;14(4):277–85. https://doi.org/10.1016/j.autrev.2014.11.008.

    Article  CAS  PubMed  Google Scholar 

  80. Yao J, Hu P, Zhang D. Associations between copper and zinc and risk of hypertension in US adults. Biol Trace Elem Res. 2018;186(2):346–53. https://doi.org/10.1007/s12011-018-1320-3.

    Article  CAS  PubMed  Google Scholar 

  81. Choi S, Liu X, Pan Z. Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases review-article. Acta Pharmacol Sin. 2018;39(7):1120–32. https://doi.org/10.1038/aps.2018.25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Miao X, Sun W, Fu Y, Miao L, Cai L. Zinc homeostasis in the metabolic syndrome and diabetes. Front Med China. 2013;7(1):31–52. https://doi.org/10.1007/s11684-013-0251-9.

    Article  Google Scholar 

  83. Milton AH, Vashum KP, McEvoy M, et al. Prospective study of dietary zinc intake and risk of cardiovascular disease in women. Nutrients. 2018;10(1). https://doi.org/10.3390/nu10010038.

  84. Schwingshackl L, Boeing H, Stelmach-Mardas M, et al. Dietary supplements and risk of cause-specific death, cardiovascular disease, and cancer: a systematic review and meta-analysis of primary prevention trials. Adv Nutr. 2017;8(1):27–39. https://doi.org/10.3945/an.116.013516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schwalfenberg GK, Genuis SJ. The importance of magnesium in clinical healthcare. Scientifica (Cairo). 2017. https://doi.org/10.1155/2017/4179326.

  86. Muñoz-Castañeda JR, Pendón-Ruiz De Mier M V., Rodríguez M, Rodríguez-Ortiz ME Magnesium replacement to protect cardiovascular and kidney damage? Lack of prospective clinical trials. Int J Mol Sci. 2018;19(3). https://doi.org/10.3390/ijms19030664.

  87. Dietary reference intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. National Academies Press; 1997. https://doi.org/10.17226/5776.

  88. de Baaij JHF, Hoenderop JGJ, Bindels RJM. Magnesium in man: implications for health and disease. Physiol Rev. 2015;95:1–46. https://doi.org/10.1152/physrev.00012.2014.-Mag.

    Article  Google Scholar 

  89. Spencer H, Norris C, Williams D. Inhibitory effects of zinc on magnesium balance and magnesium absorption in man. J Am Coll Nutr. 1994;13(5):479–84. https://doi.org/10.1080/07315724.1994.10718438.

    Article  CAS  PubMed  Google Scholar 

  90. Kiela PR, Ghishan FK. Physiology of intestinal absorption and secretion. Best Pract Res Clin Gastroenterol. 2016;30(2):145–59. https://doi.org/10.1016/j.bpg.2016.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Swaminathan R. Magnesium metabolism and its disorders. Clin Biochem Rev. 2003;24(2):47–66. Accessed 31 Aug 2020. http://www.ncbi.nlm.nih.gov/pubmed/18568054

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ross AC, Caballero BH, Cousins RJ, Tucker KL, Ziegler TR. Modern nutrition in health and disease. 11th ed. Wolters Kluwer Health Adis (ESP); 2012. Accessed 31 Aug 2020. https://jhu.pure.elsevier.com/en/publications/modern-nutrition-in-health-and-disease-eleventh-edition

    Google Scholar 

  93. Tangvoraphonkchai K, Davenport A. Magnesium and cardiovascular disease. Adv Chronic Kidney Dis. 2018;25(3):251–60. https://doi.org/10.1053/j.ackd.2018.02.010.

    Article  PubMed  Google Scholar 

  94. Severino P, Netti L, Mariani MV, et al. Prevention of cardiovascular disease: screening for magnesium deficiency. Cardiol Res Pract. 2019; https://doi.org/10.1155/2019/4874921.

  95. Gums JG. Magnesium in cardiovascular and other disorders. Am J Heal Pharm. 2004;61(15):1569–76. https://doi.org/10.1093/ajhp/61.15.1569.

    Article  CAS  Google Scholar 

  96. Shechter M. Magnesium and cardiovascular system. Magnes Res. 2010;23(2):60–72. https://doi.org/10.1684/mrh.2010.0202.

    Article  CAS  PubMed  Google Scholar 

  97. Larsson SC, Burgess S, Michaëlsson K. Serum magnesium levels and risk of coronary artery disease: Mendelian randomisation study. BMC Med. 2018;16(1). https://doi.org/10.1186/s12916-018-1065-z.

  98. Massy ZA, Drüeke TB. Magnesium and cardiovascular complications of chronic kidney disease. Nat Rev Nephrol. 2015;11(7):432–42. https://doi.org/10.1038/nrneph.2015.74.

    Article  CAS  PubMed  Google Scholar 

  99. Rosique-Esteban N, Guasch-Ferré M, Hernández-Alonso P, Salas-Salvadó J. Dietary magnesium and cardiovascular disease: a review with emphasis in epidemiological studies. Nutrients. 2018;10(2). https://doi.org/10.3390/nu10020168.

  100. Dibaba DT, Xun P, Song Y, Rosanoff A, Shechter M, He K. The effect of magnesium supplementation on blood pressure in individuals with insulin resistance, prediabetes, or noncommunicable chronic diseases: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2017;106(3):921–9. https://doi.org/10.3945/ajcn.117.155291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Verma H, Garg R. Effect of magnesium supplementation on type 2 diabetes associated cardiovascular risk factors: a systematic review and meta-analysis. J Hum Nutr Diet. 2017;30(5):621–33. https://doi.org/10.1111/jhn.12454.

    Article  CAS  PubMed  Google Scholar 

  102. Dinicolantonio JJ, Liu J, O’keefe JH. Magnesium for the prevention and treatment of cardiovascular disease. Open Hear. 2018;5:775. https://doi.org/10.1136/openhrt-2018-000775.

    Article  Google Scholar 

  103. Han H, Fang X, Wei X, et al. Dose-response relationship between dietary magnesium intake, serum magnesium concentration and risk of hypertension: a systematic review and meta-analysis of prospective cohort studies. Nutr J. 2017;16(1). https://doi.org/10.1186/s12937-017-0247-4.

  104. Li L, Yang X. The essential element manganese, oxidative stress, and metabolic diseases: links and interactions. Oxidative Med Cell Longev. 2018. https://doi.org/10.1155/2018/7580707.

  105. Aschner JL, Aschner M. Nutritional aspects of manganese homeostasis. Mol Asp Med. 2005;26(4–5 SPEC. ISS):353–62. https://doi.org/10.1016/j.mam.2005.07.003.

    Article  CAS  Google Scholar 

  106. Finley JW, Davis CD. Manganese deficiency and toxicity: are high or low dietary amounts of manganese cause for concern? Biofactors. 1999;10(1):15–24. https://doi.org/10.1002/biof.5520100102.

    Article  CAS  PubMed  Google Scholar 

  107. Mahalle N, Garg MK, Naik SS, Kulkarni MV. Association of dietary factors with severity of coronary artery disease. Clin Nutr ESPEN. 2016;15:75–9. https://doi.org/10.1016/j.clnesp.2016.06.004.

    Article  PubMed  Google Scholar 

  108. Wu C, Woo JG, Zhang N. Association between urinary manganese and blood pressure: Results from National Health and Nutrition Examination Survey (NHANES), 2011-2014. PLoS One. 2017;12(11):2011–4. https://doi.org/10.1371/journal.pone.0188145.

    Article  CAS  Google Scholar 

  109. Miller KB, Caton JS, Schafer DM, Smith DJ, Finley JW. High dietary manganese lowers heart magnesium pigs fed a low-magnesium diet. J Nutr. 2000;130(8):2032–5. https://doi.org/10.1093/jn/130.8.2032.

    Article  CAS  PubMed  Google Scholar 

  110. O’Neal SL, Zheng W. Manganese toxicity upon overexposure: a decade in review. Curr Environ Health Rep. 2015;2(3):315–28. https://doi.org/10.1007/s40572-015-0056-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jiang Y, Zheng W. Cardiovascular toxicities upon manganese exposure. Cardiovasc Toxicol. 2005;5(4):345–54. https://doi.org/10.1385/CT:5:4:345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Office of Dietary Supplements. Calcium - Health Professional Fact Sheet. Published March 26, 2020. Accessed 31 Aug 2020. https://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/

  113. Bolland MJ, Grey A, Reid IR. Calcium supplements and cardiovascular risk: 5 years on. Ther Adv Drug Saf. 2013;4(5):199–210. https://doi.org/10.1177/2042098613499790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bolland MJ, Barber PA, Doughty RN, et al. Vascular events in healthy older women receiving calcium supplementation: randomised controlled trial. BMJ. 2008;336(7638):262–6. https://doi.org/10.1136/bmj.39440.525752.BE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bolland MJ, Avenell A, Baron JA, et al. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ. 2010;341(7767):289. https://doi.org/10.1136/bmj.c3691.

    Article  CAS  Google Scholar 

  116. Tankeu AT, Ndip Agbor V, Noubiap JJ. Calcium supplementation and cardiovascular risk: a rising concern. J Clin Hypertens. 2017;19(6):640–6. https://doi.org/10.1111/jch.13010.

    Article  CAS  Google Scholar 

  117. Shin CS, Kim KM. Calcium, is it better to have less? - Global health perspectives. J Cell Biochem. 2015;116(8):1513–21. https://doi.org/10.1002/jcb.25119.

    Article  CAS  PubMed  Google Scholar 

  118. Yang C, Shi X, Xia H, et al. The evidence and controversy between dietary calcium intake and calcium supplementation and the risk of cardiovascular disease: a systematic review and meta-analysis of cohort studies and randomized controlled trials. J Am Coll Nutr. 2020;39(4):352–70. https://doi.org/10.1080/07315724.2019.1649219.

    Article  CAS  PubMed  Google Scholar 

  119. Asemi Z, Foroozanfard F, Hashemi T, Bahmani F, Jamilian M, Esmaillzadeh A. Calcium plus vitamin D supplementation affects glucose metabolism and lipid concentrations in overweight and obese vitamin D deficient women with polycystic ovary syndrome. Clin Nutr. 2015;34(4):586–92. https://doi.org/10.1016/j.clnu.2014.09.015.

    Article  CAS  PubMed  Google Scholar 

  120. Reid IR, Mason B, Horne A, et al. Effects of calcium supplementation on serum lipid concentrations in normal older women: a randomized controlled trial. Am J Med. 2002;112(5):343–7. https://doi.org/10.1016/S0002-9343(01)01138-X.

    Article  CAS  PubMed  Google Scholar 

  121. Umesawa M, Iso H, Date C, et al. Dietary intake of calcium in relation to mortality from cardiovascular disease: the JACC study. Stroke. 2006;37(1):20–6. https://doi.org/10.1161/01.STR.0000195155.21143.38.

    Article  CAS  PubMed  Google Scholar 

  122. Kong SH, Kim JH, Hong AR, Cho NH, Shin CS. Dietary calcium intake and risk of cardiovascular disease, stroke, and fracture in a population with low calcium intake. Am J Clin Nutr. 2017;106(1):27–34. https://doi.org/10.3945/ajcn.116.148171.

    Article  CAS  PubMed  Google Scholar 

  123. Heaney RP, Nordin BEC. Calcium effects on phosphorus absorption: implications for the prevention and co-therapy of osteoporosis. J Am Coll Nutr. 2002;21(3):239–44. https://doi.org/10.1080/07315724.2002.10719216.

    Article  CAS  PubMed  Google Scholar 

  124. Palmer SC, Hayen A, Macaskill P, et al. Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease a systematic review and meta-analysis. J Am Med Assoc. 2011;305(11):1119–27. https://doi.org/10.1001/jama.2011.308.

    Article  CAS  Google Scholar 

  125. Menon MC, Ix JH. Dietary phosphorus, serum phosphorus, and cardiovascular disease. Ann N Y Acad Sci. 2013;1301(1):21–6. https://doi.org/10.1111/nyas.12283.

    Article  CAS  PubMed  Google Scholar 

  126. Kendrick J, Chonchol M. The role of phosphorus in the development and progression of vascular calcification. Am J Kidney Dis. 2011;58(5):826–34. https://doi.org/10.1053/j.ajkd.2011.07.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gutiérrez OM. The connection between dietary phosphorus, cardiovascular disease, and mortality: where we stand and what we need to know. Adv Nutr. 2013;4(6):723–9. https://doi.org/10.3945/an.113.004812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bai W, Li J, Liu J. Serum phosphorus, cardiovascular and all-cause mortality in the general population: a meta-analysis. Clin Chim Acta. 2016;461:76–82. https://doi.org/10.1016/j.cca.2016.07.020.

    Article  CAS  PubMed  Google Scholar 

  129. Chang AR, Lazo M, Appel LJ, Gutiérrez OM, Grams ME. High dietary phosphorus intake is associated with all-cause mortality: results from NHANES III1-3. Am J Clin Nutr. 2014;99(2):320–7. https://doi.org/10.3945/ajcn.113.073148.

    Article  CAS  PubMed  Google Scholar 

  130. Uribarri J, Calvo MS. Introduction to dietary phosphorus excess and health. Ann N Y Acad Sci. 2013;1301(1):iii–iv. https://doi.org/10.1111/nyas.12302.

  131. Wang J, Wang F, Dong S, Zeng Q, Zhang L. Levels of serum phosphorus and cardiovascular surrogate markers: a population-based cross-sectional study. J Atheroscler Thromb. 2016;23(1):95–104. https://doi.org/10.5551/jat.31153.

    Article  CAS  PubMed  Google Scholar 

  132. Shimada M, Shutto-Uchita Y, Yamabe H. Lack of awareness of dietary sources of phosphorus is a clinical concern. In Vivo (Brooklyn). 2019;33(1):11–6. https://doi.org/10.21873/invivo.11432.

    Article  CAS  Google Scholar 

  133. Uribarri J, Calvo MS. Dietary phosphorus excess: a risk factor in chronic bone, kidney, and cardiovascular disease? Adv Nutr. 2013;4(5):542–4. https://doi.org/10.3945/an.113.004234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Savica V, Duro G, Bellingheri G, Monroy A. Between the utility and hazards of phosphorus through the centuries. G Ital Nefrol. 2016;33(Suppl 66):33.S66.31.

    PubMed  Google Scholar 

  135. Larry Jameson J, Fauci AS, Kasper DL, Hauser SL, Longo DL, Loscalzo J, editors. Harrison’s principles of internal medicine. 20th ed. McGraw-Hill Medical. Accessed 31 Aug 2020. https://accessmedicine.mhmedical.com/book.aspx?bookID=2129

  136. Weaver CM. Potassium and health. Adv Nutr. 2013;4(3):368S. https://doi.org/10.3945/an.112.003533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ellison DH, Terker AS. Why your mother was right: how potassium intake reduces blood pressure. Trans Am Clin Climatol Assoc. 2015;126:46–55. Accessed August 31, 2020. /pmc/articles/PMC4530669/?report=abstract

    PubMed  PubMed Central  Google Scholar 

  138. Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ. 2013;346(7903). https://doi.org/10.1136/bmj.f1378.

  139. Lu J, Holmgren A. Selenoproteins. J Biol Chem. 2009;284(2):723–7. https://doi.org/10.1074/jbc.R800045200.

    Article  CAS  PubMed  Google Scholar 

  140. Huawei Z. Selenium as an essential micronutrient: roles in cell cycle and apoptosis. Molecules. 2009;14(3):1263–78. https://doi.org/10.3390/molecules14031263.

    Article  CAS  Google Scholar 

  141. Zeng H, Wu M, Botnen JH. Methylselenol, a selenium metabolite, induces cell cycle arrest in GI phase and apoptosis via the extracellular-regulated-and other cancer signaling kinase 112 pathway genes 1-3. J Nutr. 2009;139:1613–8. https://doi.org/10.3945/jn.109.110320.

    Article  CAS  PubMed  Google Scholar 

  142. Chen J. An original discovery: selenium deficiency and Keshan disease (an endemic heart disease). Asia Pac J Clin Nutr. 2012;21(3):320–326.144.

    PubMed  Google Scholar 

  143. Navarro-Alarcon M, Cabrera-Vique C. Selenium in food and the human body: a review. Sci Total Environ. 2008;400(1–3):115–41. https://doi.org/10.1016/j.scitotenv.2008.06.024.

    Article  CAS  PubMed  Google Scholar 

  144. Benstoem C, Goetzenich A, Kraemer S, et al. Selenium and its supplementation in cardiovascular disease—what do we know? Nutrients. 2015;7(5):3094–118. https://doi.org/10.3390/nu7053094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tanguy S, Grauzam S, de Leiris J, Boucher F. Impact of dietary selenium intake on cardiac health: experimental approaches and human studies. Mol Nutr Food Res. 2012;56(7):1106–21. https://doi.org/10.1002/mnfr.201100766.

    Article  CAS  PubMed  Google Scholar 

  146. Zhang X, Liu C, Guo J, Song Y. Selenium status and cardiovascular diseases: meta-analysis of prospective observational studies and randomized controlled trials. Eur J Clin Nutr. 2016;70(2):162–9. https://doi.org/10.1038/ejcn.2015.78.

    Article  CAS  PubMed  Google Scholar 

  147. Stranges S, Navas-Acien A, Rayman MP, Guallar E. Selenium status and cardiometabolic health: state of the evidence. Nutr Metab Cardiovasc Dis. 2010;20(10):754–60. https://doi.org/10.1016/j.numecd.2010.10.001.

    Article  CAS  PubMed  Google Scholar 

  148. Gharipour M, Sadeghi M, Behmanesh M, Salehi M, Nezafati P, Gharipour A. Selenium homeostasis and clustering of cardiovascular risk factors: a systematic review. Acta Biomed. 2017;88(3):263–70. https://doi.org/10.23750/abm.v%vi%i.5701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Office of Dietary Supplements. Copper - health professional fact sheet. Published July 2020. Accessed 31 Aug 2020. https://ods.od.nih.gov/factsheets/Copper-HealthProfessional/.

  150. Fukai T, Ushio-Fukai M, Kaplan JH. Copper transporters and copper chaperones: roles in cardiovascular physiology and disease. Am J Physiol Cell Physiol. 2018;315(2):C186–201. https://doi.org/10.1152/ajpcell.00132.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Klevay LM. Cardiovascular disease from copper deficiency - a history. J Nutr. 2000;130. American Institute of Nutrition. https://doi.org/10.1093/jn/130.2.489s.

  152. Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 2011;15(6):1583–606. https://doi.org/10.1089/ars.2011.3999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Saari JT. Copper deficiency and cardiovascular disease: role of peroxidation, glycation, and nitration. Can J Physiol Pharmacol. 2000;78(10):848–55. https://doi.org/10.1139/cjpp-78-10-848.

    Article  CAS  PubMed  Google Scholar 

  154. Ford ES. Serum copper concentration and coronary heart disease among US adults. Am J Epidemiol. 2000;151(12):1182–8. https://doi.org/10.1093/oxfordjournals.aje.a010168.

    Article  CAS  PubMed  Google Scholar 

  155. Reunanen A, Knekt P, Marniemi J, Mäki J, Maatela J, Aromaa A. Serum calcium, magnesium, copper and zinc and risk of cardiovascular death. Eur J Clin Nutr. 1996;50(7):431–7. Accessed 31Aug 2020. https://europepmc.org/article/med/8862478

    CAS  PubMed  Google Scholar 

  156. Disilvestro RA, Joseph EL, Zhang W, Raimo AE, Kim YM. A randomized trial of copper supplementation effects on blood copper enzyme activities and parameters related to cardiovascular health. Metabolism. 2012;61(9):1242–6. https://doi.org/10.1016/j.metabol.2012.02.002.

    Article  CAS  PubMed  Google Scholar 

  157. Vincent JB, Edwards KC. The absorption and transport of chromium in the body. In: The nutritional biochemistry of chromium (III). Elsevier; 2019. p. 129–74. https://doi.org/10.1016/b978-0-444-64121-2.00004-0.

    Chapter  Google Scholar 

  158. Cefalu WT, Hu FB. Role of chromium in human health and in diabetes. Diabetes Care. 2004;27(11):2741–51.

    Article  CAS  Google Scholar 

  159. Rajpathak S, Rimm EB, Li T, et al. Lower toenail chromium in men with diabetes and cardiovascular disease compared with healthy men. Diabetes Care. 2004;27(9):2211–6. https://doi.org/10.2337/diacare.27.9.2211.

    Article  CAS  PubMed  Google Scholar 

  160. Hummel M, Standl E, Schnell O. Chromium in metabolic and cardiovascular disease. Horm Metab Res. 2007;39:743–51. https://doi.org/10.1055/s-2007-985847.

    Article  CAS  PubMed  Google Scholar 

  161. A scientific review: the role of chromium in insulin resistance - PubMed. Diabetes Educ. 2004;Suppl:2–14. Accessed 31 Aug 2020. https://pubmed.ncbi.nlm.nih.gov/15208835/.

  162. Bai J, Xun P, Morris S, Jacobs DR, Liu K, He K. Chromium exposure and incidence of metabolic syndrome among American young adults over a 23-year follow-up: the CARDIA trace element study. Sci Rep. 2015;5: https://doi.org/10.1038/srep15606.

  163. Ngala RA, Awe MA, Nsiah P. The effects of plasma chromium on lipid profile, glucose metabolism and cardiovascular risk in type 2 diabetes mellitus. A case - control study. PLoS One. 2018;13(7): https://doi.org/10.1371/journal.pone.0197977.

  164. Ernster L, Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. BBA - Mol Basis Dis. 1995;1271(1):195–204. https://doi.org/10.1016/0925-4439(95)00028-3.

    Article  Google Scholar 

  165. Sohal RS, Kamzalov S, Sumien N, et al. Effect of coenzyme Q10 intake on endogenous coenzyme Q content, mitochondrial electron transport chain, antioxidative defenses, and life span of mice. Free Radic Biol Med. 2006;40(3):480–7. https://doi.org/10.1016/j.freeradbiomed.2005.08.037.

    Article  CAS  PubMed  Google Scholar 

  166. Gutiérrez E, Flammer AJ, Lerman LO, Elízaga J, Lerman A, Francisco FA. Endothelial dysfunction over the course of coronary artery disease. Eur Heart J. 2013;34(41):3175. https://doi.org/10.1093/eurheartj/eht351.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Gao L, Mao Q, Cao J, Wang Y, Zhou X, Fan L. Effects of coenzyme Q10 on vascular endothelial function in humans: a meta-analysis of randomized controlled trials. Atherosclerosis. 2012;221(2):311–6. https://doi.org/10.1016/j.atherosclerosis.2011.10.027.

    Article  CAS  PubMed  Google Scholar 

  168. Huo J, Xu Z, Hosoe K, et al. Coenzyme Q10 prevents senescence and dysfunction caused by oxidative stress in vascular endothelial cells. Oxidative Med Cell Longev. 2018; https://doi.org/10.1155/2018/3181759.

  169. Alehagen U, Aaseth J, Johansson P. Reduced cardiovascular mortality 10 years after supplementation with selenium and coenzyme q10 for four years: follow-up results of a prospective randomized double-blind placebo-controlled trial in elderly citizens. PLoS One. 2015;10(12): https://doi.org/10.1371/journal.pone.0141641.

  170. Lee BJ, Lin YC, Huang YC, Ko YW, Hsia S, Lin PT. The relationship between coenzyme Q10, oxidative stress, and antioxidant enzymes activities and coronary artery disease. Sci World J. 2012; https://doi.org/10.1100/2012/792756.

  171. Jorat MV, Tabrizi R, Kolahdooz F, et al. The effects of coenzyme Q10 supplementation on biomarkers of inflammation and oxidative stress in among coronary artery disease: a systematic review and meta-analysis of randomized controlled trials. Inflammopharmacology. 2019;27(2):233–48. https://doi.org/10.1007/s10787-019-00572-x.

    Article  CAS  PubMed  Google Scholar 

  172. Huang CH, Kuo CL, Huang CS, et al. High plasma coenzyme Q10 concentration is correlated with good left ventricular performance after primary angioplasty in patients with acute myocardial infarction. Med (United States). 2016;95(31): https://doi.org/10.1097/MD.0000000000004501.

  173. Lei L, Liu Y. Efficacy of coenzyme Q10 in patients with cardiac failure: a meta-analysis of clinical trials. BMC Cardiovasc Disord. 2017;17(1):196. https://doi.org/10.1186/s12872-017-0628-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhang X, Liu H, Hao Y, et al. Coenzyme Q10 protects against hyperlipidemia-induced cardiac damage in apolipoprotein E-deficient mice. Lipids Health Dis. 2018;17(1): https://doi.org/10.1186/s12944-018-0928-9.

  175. Qu H, Guo M, Chai H, Wang W-T, Zhu-Ye G, Da-Zhuo S. Effects of coenzyme Q10 on statin-induced myopathy: an updated meta-analysis of randomized controlled trials. https://doi.org/10.1161/JAHA.118.009835.

  176. Kennedy C, Köller Y, Surkova E. Effect of coenzyme Q10 on statin-associated myalgia and adherence to statin therapy: a systematic review and meta-analysis. Atherosclerosis. 2020;299:1–8. https://doi.org/10.1016/j.atherosclerosis.2020.03.006.

    Article  CAS  PubMed  Google Scholar 

  177. Amagase H. Clarifying the real bioactive constituents of garlic. J Nutr. 2006;136:716S–25S. https://doi.org/10.1093/jn/136.3.716s. American Institute of Nutrition

    Article  CAS  PubMed  Google Scholar 

  178. Ried K, Travica N, Sali A. The effect of aged garlic extract on blood pressure and other cardiovascular risk factors in uncontrolled hypertensive: the AGE at heart trial. Integr Blood Press Control. 2016;9:9–21. https://doi.org/10.2147/IBPC.S93335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ried K. Garlic lowers blood pressure in hypertensive individuals, regulates serum cholesterol, and stimulates immunity: an updated meta-analysis and review. J Nutr. 2016;146(2):389S–96S. https://doi.org/10.3945/jn.114.202192.

    Article  CAS  PubMed  Google Scholar 

  180. Sun YE, Wang W, Qin J. Anti-hyperlipidemia of garlic by reducing the level of total cholesterol and low-density lipoprotein. Med (United States). 2018;97(18): https://doi.org/10.1097/MD.0000000000010255.

  181. Bordia A, Verma SK, Srivastava KC. Effect of garlic on platelet aggregation in humans: a study in healthy subjects and patients with coronary artery disease. Prostaglandins Leukot Essent Fat Acids. 1996;55(3):201–5. https://doi.org/10.1016/S0952-3278(96)90099-X.

    Article  CAS  Google Scholar 

  182. Adkins Y, Kelley DS. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem. 2010;21(9):781–92. https://doi.org/10.1016/j.jnutbio.2009.12.004.

    Article  CAS  PubMed  Google Scholar 

  183. Mozaffarian D, Wu JHY. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol. 2011;58(20):2047–67. https://doi.org/10.1016/j.jacc.2011.06.063.

    Article  CAS  PubMed  Google Scholar 

  184. Rees K, Hartley L, Flowers N, et al. “Mediterranean” dietary pattern for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013;(8): https://doi.org/10.1002/14651858.CD009825.pub2.

  185. Schrepf R, Limmert T, Weber PC, Theisen K, Sellmayer A. Immediate effects of n-3 fatty acid infusion on the induction of sustained ventricular tachycardia. Lancet. 2004;363(9419):1441–2. https://doi.org/10.1016/S0140-6736(04)16105-9.

    Article  CAS  PubMed  Google Scholar 

  186. Maki KC, Orloff DG, Nicholls SJ, et al. A highly bioavailable omega-3 free fatty acid formulation improves the cardiovascular risk profile in high-risk, statin-treated patients with residual hypertriglyceridemia (the ESPRIT trial). Clin Ther. 2013;35(9): https://doi.org/10.1016/j.clinthera.2013.07.420.

  187. Backes J, Anzalone D, Hilleman D, Catini J. The clinical relevance of omega-3 fatty acids in the management of hypertriglyceridemia. Lipids Health Dis. 2016;15(1):1–12. https://doi.org/10.1186/s12944-016-0286-4.

    Article  CAS  Google Scholar 

  188. AbuMweis S, Jew S, Tayyem R, Agraib L. Eicosapentaenoic acid and docosahexaenoic acid containing supplements modulate risk factors for cardiovascular disease: a meta-analysis of randomised placebo-control human clinical trials. J Hum Nutr Diet. 2018;31(1):67–84. https://doi.org/10.1111/jhn.12493.

    Article  CAS  PubMed  Google Scholar 

  189. Abdelhamid AS, Brown TJ, Brainard JS, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;2018(7): https://doi.org/10.1002/14651858.CD003177.pub3.

  190. Marchioli R. Dietary supplementation with N-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet. 1999;354(9177):447–55. https://doi.org/10.1016/S0140-6736(99)07072-5.

    Article  Google Scholar 

  191. Manson JE, Cook NR, Lee I-M, et al. Marine n−3 fatty acids and prevention of cardiovascular disease and Cancer. N Engl J Med. 2019;380(1):23–32. https://doi.org/10.1056/NEJMoa1811403.

    Article  CAS  PubMed  Google Scholar 

  192. Magyar K, Halmosi R, Palfi A, et al. Cardioprotection by resveratrol: a human clinical trial in patients with stable coronary artery disease. Clin Hemorheol Microcirc. 2012;50(3):179–87. https://doi.org/10.3233/CH-2011-1424.

    Article  CAS  PubMed  Google Scholar 

  193. Moriarty PM, Roth EM, Karns A, et al. Effects of Xuezhikang in patients with dyslipidemia: a multicenter, randomized, placebo-controlled study. J Clin Lipidol. 2014;8(6):568–75. https://doi.org/10.1016/j.jacl.2014.09.002.

    Article  PubMed  Google Scholar 

  194. Red Yeast Rice | NCCIH. Published July 2013. Accessed 31 Aug 2020. https://www.nccih.nih.gov/health/red-yeast-rice

  195. Ye P, Lu ZL, Du BM, et al. Effect of xuezhikang on cardiovascular events and mortality in elderly patients with a history of myocardial infarction: a subgroup analysis of elderly subjects from the China Coronary Secondary Prevention Study. J Am Geriatr Soc. 2007;55(7):1015–22. https://doi.org/10.1111/j.1532-5415.2007.01230.x.

    Article  PubMed  Google Scholar 

  196. Zhao S, Lu Z, Du B, et al. Xuezhikang, an extract of Cholestin, reduces cardiovascular events in type 2 diabetes patients with coronary heart disease: subgroup analysis of patients with type 2 diabetes from China coronary secondary prevention study (CCSPS). J Cardiovasc Pharmacol. 2007;49(2):81–4. https://doi.org/10.1097/FJC.0b013e31802d3a58.

    Article  CAS  PubMed  Google Scholar 

  197. Gerards MC, Terlou RJ, Yu H, Koks CHW, Gerdes VEA. Traditional Chinese lipid-lowering agent red yeast rice results in significant LDL reduction but safety is uncertain - a systematic review and meta-analysis. Atherosclerosis. 2015;240(2):415–23. https://doi.org/10.1016/j.atherosclerosis.2015.04.004.

    Article  CAS  PubMed  Google Scholar 

  198. Heinonen T, Gaus W. Cross matching observations on toxicological and clinical data for the assessment of tolerability and safety of Ginkgo biloba leaf extract. Toxicology. 2015;327:95–115. https://doi.org/10.1016/j.tox.2014.10.013.

    Article  CAS  PubMed  Google Scholar 

  199. Chen TR, Wei LH, Guan XQ, et al. Biflavones from Ginkgo biloba as inhibitors of human thrombin. Bioorg Chem. 2019;92: https://doi.org/10.1016/j.bioorg.2019.103199.

  200. Rodríguez M, Ringstad L, Schäfer P, et al. Reduction of atherosclerotic nanoplaque formation and size by Ginkgo biloba (EGb 761) in cardiovascular high-risk patients. Atherosclerosis. 2007;192(2):438–44. https://doi.org/10.1016/j.atherosclerosis.2007.02.021.

    Article  CAS  PubMed  Google Scholar 

  201. Feng Z, Yang X, Zhang L, et al. Ginkgolide B ameliorates oxidized low-density lipoprotein-induced endothelial dysfunction via modulating Lectin-like ox-LDL-receptor-1 and NADPH oxidase 4 expression and inflammatory cascades. Phytother Res. 2018;32(12):2417–27. https://doi.org/10.1002/ptr.6177.

    Article  CAS  PubMed  Google Scholar 

  202. Kim Y, Clifton P. Curcumin, cardiometabolic health and dementia. Int J Environ Res Public Health. 2018;15(10): https://doi.org/10.3390/ijerph15102093.

  203. Yuan F, Dong H, Gong J, et al. A systematic review and meta-analysis of randomized controlled trials on the effects of turmeric and curcuminoids on blood lipids in adults with metabolic diseases. Adv Nutr. 2019;10(5):791–802. https://doi.org/10.1093/advances/nmz021.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Qin S, Huang L, Gong J, et al. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: a meta-analysis of randomized controlled trials. Nutr J. 2017;16(1):68. https://doi.org/10.1186/s12937-017-0293-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Keihanian F, Saeidinia A, Bagheri RK, Johnston TP, Sahebkar A. Curcumin, hemostasis, thrombosis, and coagulation. J Cell Physiol. 2018;233(6):4497–511. https://doi.org/10.1002/jcp.26249.

    Article  CAS  PubMed  Google Scholar 

  206. Oketch-Rabah HA, Roe AL, Rider CV, et al. United States Pharmacopeia (USP) comprehensive review of the hepatotoxicity of green tea extracts. Toxicol Rep. 2020;7:386–402. https://doi.org/10.1016/j.toxrep.2020.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Hartley L, Flowers N, Holmes J, et al. Green and black tea for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013;2013(6): https://doi.org/10.1002/14651858.CD009934.pub2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Moran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moran, R., Davis, MG., Maletz, A. (2021). Role of Dietary Nutrition, Vitamins, Nutrients, and Supplements in Cardiovascular Health. In: Wilkinson, M.J., Garshick, M.S., Taub, P.R. (eds) Prevention and Treatment of Cardiovascular Disease. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-78177-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78177-4_1

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-78176-7

  • Online ISBN: 978-3-030-78177-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics