Skip to main content

A Logic-Based Approach to Incremental Reasoning on Multi-agent Systems

  • Conference paper
  • First Online:
Modeling, Dynamics, Optimization and Bioeconomics IV (ICABR 2017, DGS 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 365))

Included in the following conference series:

  • 383 Accesses

Abstract

We introduce the notion of strongly distributed multi-agent systems and present a uniform approach to incremental automated reasoning on them. The approach is based on systematic use of two logical reduction techniques: Feferman-Vaught reductions and syntactically defined translation schemes. The distributed systems are presented as logical structures \(\mathcal{A}\)’s. We propose a uniform template for methods, which allow for certain cost evaluation of formulae of logic \({\mathcal L}\) over \(\mathcal{A}\) from values of formulae over its components and values of formulae over the index structure \(\mathcal{I}\). Given logic \(\mathcal{L}\), structure \(\mathcal{A}\) as a composition of structures \(\mathcal{A}_i, i \in I\), index structure \(\mathcal{I}\) and formula \(\phi \) of the logic to be evaluated on \(\mathcal{A}\), the question is: what is the reduction sequence for \(\phi \) if any. We show that if we may prove preservation theorems for \(\mathcal{L}\) as well as if \(\mathcal{A}\) is a strongly distributed composition of its components then the corresponding reduction sequence for \(\mathcal{A}\) may be effectively computed. We show that the approach works for lots of extensions of FOL but not all. The considered extensions of FOL are suitable candidates for modeling languages for components and services, used in incremental automated reasoning, data mining, decision making, planning and scheduling. A short complexity analysis of the method is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The first element of the First stream satisfy the condition: First element of a fragment is labeled by \(\otimes \). However, its fragment does not satisfy the condition: The fragments are succeeding.

  2. 2.

    The prefix order means here the prefix order on strings, which is a special kind of substring relation. \(p\prec _1 p^{\prime }\) iff \(p\prec p^{\prime }\) and \(p^{\prime }\) has exactly one more transition than p.

  3. 3.

    In the definition, the prefix order \(\prec _1\) generalizes the intuitive concept of a tree by introducing the possibility of continuous progress and continuous branching.

  4. 4.

    \(n_{\imath }\) is the size of the coding of \(T_{\imath }\).

  5. 5.

    However, in practical applications, the complexity, as a rule, is simply exponential.

  6. 6.

    Note that this includes reduction sequences for disjoint pairs and disjoint multiples.

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)

    Google Scholar 

  2. Arnold, A., Niwiński, D.: Fixed point characterization of weak monadic logic definable sets of trees. In: A. M.Nivat (ed.) Tree Automata and Languages, pp. 159–188. Elsevier Science Publishers B.V. (1992)

    Google Scholar 

  3. Ashenhurst, R.: The decomposition of switching functions, vol. 29, pp. 74–116. Annals Computation Laboratory, Harvard University (1959)

    Google Scholar 

  4. Bagirov, A., Ordin, B., Ozturk, G., Xavier, A.: An incremental clustering algorithm based on hyperbolic smoothing. Comp. Opt. Appl. 61(1), 219–241 (2015). http://dx.doi.org/10.1007/s10589-014-9711-7

  5. Belardinelli, F., Lomuscio, A.: Quantified epistemic logics for reasoning about knowledge in multi-agent systems. Artif. Intell. 173(9), 982–1013 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benedikt, M., Koch, C.: From XQuery to relational logics. ACM Trans. Database Syst. 34(4), 25:1–25:48 (2009)

    Google Scholar 

  7. Boerkoel Jr. J.C., Durfee, E.: Distributed reasoning for multiagent simple temporal problems. J. Artif. Intell. Res. 47, 95–156 (2013)

    Google Scholar 

  8. Boerkoel, J., Planken, L., Wilcox, R., Shah, J.: Distributed algorithms for incrementally maintaining multiagent simple temporal networks. In: Proceedings of the 23rd International Conference on Automated Planning and Scheduling(ICAPS-13), pp. 11–19. AAAI Press (2013). http://www.st.ewi.tudelft.nl/~planken/papers/icaps13.pdf

  9. Bollig, B., Gastin, P.: Weighted versus probabilistic logics. In: Diekert, V., Nowotka, D. (eds.) DLT 2009, LNCS R5583, pp. 18–38. Springer, Berlin Heidelberg (2009)

    Google Scholar 

  10. Bosse, U.: An Ehrenfeucht–Fraïssé game for fixed point logic and stratified fixed point logic. In: CSL’92. Lecture Notes in Computer Science, vol. 702, pp. 100–114. Springer (1993)

    Google Scholar 

  11. Bosse, U.: Ehrenfeucht–Fraïssé games for fixed point logic. Ph.D. thesis, Department of Mathematics, University of Freiburg, Germany (1995)

    Google Scholar 

  12. Burgess, J.: Basic Tense Logic, vol. 2, chap. 2, pp. 89–133. D. Reidel Publishing Company (1984)

    Google Scholar 

  13. Cao, T., Creasy, P.: Fuzzy types: a framework for handling uncertainty about types of objects. Int. J. Approx. Reason 25(3), 217–253 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Casanova, G., Pralet, C., Lesire, C.: Managing dynamic multi-agent simple temporal network. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’15, pp. 1171–1179. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2015)

    Google Scholar 

  15. Chang, C., Keisler, H.: Model Theory, 3rd edn. Studies in Logic, vol. 73. North–Holland (1990)

    Google Scholar 

  16. Courcelle, B., Makowsky, J., Rotics, U.: Linear time solvable optimization problems on graph of bounded clique width, extended abstract. In: J. Hromkovic, O. Sykora (eds.) Graph Theoretic Concepts in Computer Science. Lecture Notes in Computer Science, vol. 1517, pp. 1–16. Springer (1998)

    Google Scholar 

  17. Courcelle, B.: The monadic second-order logic of graphs ix: Machines and their behaviours. Theor. Comput. Sci. 151(1), 125–162 (1995). (Selected Papers of the Workshop on Topology and Completion in Semantics)

    Google Scholar 

  18. Courcelle, B.: The monadic second-order logic of graphs VIII: orientations. Ann. Pure Appl. Logic 72, 103–143 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Courcelle, B., Walukiewicz, I.: Monadic second-order logic, graphs and unfoldings of transition systems. Ann. Pure Appl. Logic 92, 35–62 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K., Santos, E., Subramonian, R., von Eicken, T.: LogP: towards a realistic model of parallel computation. In: PPOPP’93 Proceedings of the fourth ACM SIGPLAN Symposium on Principles and practice of parallel programming, vol. 28(7), pp. 1–12 (1993)

    Google Scholar 

  21. Curtis, H.: A new approach to the design of switching circuits. Van Nostrand (1962)

    Google Scholar 

  22. Cvrček, D.: Authorization model for strongly distributed information systems. Ph.D. thesis, Faculty of Electrical Engineering and Computer Science, Brno University of Technology, Czech Republic (2000)

    Google Scholar 

  23. Cyriac, A., Gastin, P.: Reasoning about distributed systems: WYSIWYG (invited talk). In: 34th International Conference on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2014, December 15–17, 2014, New Delhi, India, pp. 11–30 (2014). http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.11

  24. Dawar, A., Hellat, L.: The expressive power of finitely many genaralized quantifiers: Technical Report CSR 24–93. University of Wales, University College of Swansea, U.K, Computer Science Department (1993)

    Google Scholar 

  25. Dibangoye, J., Mouaddib, A.I., Chai-draa, B.: Point-based incremental pruning heuristic for solving finite-horizon DEC-POMDPs. In: Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems, AAMAS’09, vol. 1, pp. 569–576. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2009). http://dl.acm.org/citation.cfm?id=1558013.1558092

  26. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific (1995). https://books.google.ca/books?id=vNFLOE2pjuAC

  27. D’Inverno, M., Luck, M., Georgeff, M., Kinny, D., Wooldridge, M.: The dMARS architecture: a specification of the distributed multi-agent reasoning system. Auton. Agents Multi-Agent Syst 9(1–2), 5–53 (2004)

    Article  Google Scholar 

  28. Doherty, P., Driankov, D.: Nonmonotonicity, fuzziness, and multi-values. In: Lowen, R., Roubens, M. (eds.) Fuzzy Logic, pp. 3–15. Kluwer Academic Publishers, Dordrecht (1993)

    Chapter  Google Scholar 

  29. Droste, M., Götze, D., Märcker, S., Meinecke, I.: Weighted tree automata over valuation monoids and their characterization by weighted logics. In: Kuich, W., Rahonis, G. (eds.) Bozapalidis Festschrift. LNCS 7020, pp. 30–55. Springer, Berlin Heidelberg (2011)

    Google Scholar 

  30. Droste, M., Meinecke, I.: Describing average-and longtime-behavior by weighted MSO logics. In: P. Hlinĕný, A. Kuc̆era (eds.) MFCS 2010. LNCS 6281, pp. 537–548. Springer, Berlin Heidelberg (2010)

    Google Scholar 

  31. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput. Sci. 380, 69–86 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Droste, M., Vogler, H.: Weighted logics for unranked tree automata. Theory Comput. Syst. 48(1), 23–47 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ebbinghaus, H., Flum, J., Thomas, W.: Mathematical Logic, 2nd edn. Undergraduate Texts in Mathematics. Springer (1994)

    Google Scholar 

  34. Ebbinghaus, H., Flum, J.: Finite Model Theory. Perspectives in Mathematical Logic. Springer (1995)

    Google Scholar 

  35. Ehrenfeucht, A.: An application of games to the completeness problem for formalized theories. Fundamenta Mathematicae 49, 129–141 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  36. Emerson, E.: Temporal and modal logic. In: J. van Leeuwen (ed.) Handbook of Theoretical Computer Science, vol. 2, chap. 16, pp. 995–1072. Elsevier Science Publishers (1990)

    Google Scholar 

  37. Fagin, R.: Generalized first-order spectra and polynomial time recognizable sets. In: R. Karp (ed.) Complexity of Computation. American Mathematical Society Proceeding, vol. 7, pp. 27–41. Society for Industrial and Applied Mathematics (1974)

    Google Scholar 

  38. Feferman, S., Vaught, R.: The first order properties of products of algebraic systems. Fundamenta Mathematicae 47, 57–103 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1999)

    Google Scholar 

  40. Fichtner, I.: Weighted picture automata and weighted logics. In: STACS 2006, pp. 313–324. Springer (2006)

    Google Scholar 

  41. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. Ann. Pure Appl. Logic 130(1), 3–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gandhi, A., Khoussainov, B., Liu, J.: Finite automata over structures. In: M. Agrawal, A. Li, S. Cooper (eds.) Theory and Applications of Models of Computation: 9th Annual Conference, TAMC 2012, 2012. Proceedings, pp. 373–384. Springer, Heidelberg (2012)

    Google Scholar 

  43. Grädel, E., Siebertz, S.: Dynamic definability. In: 15th International Conference on Database Theory, ICDT’12, pp. 236–248. Berlin, Germany, March 26–29 (2012). https://doi.org/10.1145/2274576.2274601

  44. Grädel, E.: On transitive closure logic. In: E. Börger, G. Jäger, H.K. Büning, M. Richter (eds.) Computer Science Logic. Lecture Notes in Computer Science, vol. 626, pp. 149–163. Springer (1992)

    Google Scholar 

  45. Grohe, M.: The structure of fixed point logics. Ph.D. thesis, Department of Mathematics, University of Freiburg, Germany (1994)

    Google Scholar 

  46. Gurevich, Y.: Modest theory of short chains. I. J. Symb. Logic 44, 481–490 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  47. Harel, D.: Dynamic Logic, vol. 2, chap. 10, pp. 497–604. Springer Netherlands, Dordrecht (1984)

    Google Scholar 

  48. Hasemann, J.M.: Planning, behaviours, decomposition, and monitoring using graph grammars and fuzzy logic. In: Proceedings of the Second International Conference on Artificial Intelligence Planning Systems, University of Chicago, Chicago, Illinois, USA, June 13–15, 1994, pp. 275–280 (1994)

    Google Scholar 

  49. Hilbert, D., Bernays, P.: Grundlagen der Mathematik, I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungn, vol. 40, 2nd edn. Springer, Heidelberg (1970)

    Google Scholar 

  50. Immerman, N.: Descriptive complexity. Graduate texts in computer science. Springer (1999). https://doi.org/10.1007/978-1-4612-0539-5

  51. Immerman, N.: Relational queries computable in polynomial time. In: STOC’82, pp. 147–152. ACM (1982)

    Google Scholar 

  52. Immerman, N.: Languages that capture complexity classes. SIAM J. Comput. 16(4), 760–778 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  53. Immerman, N.: Expressibility and parallel complexity. SIAM J. Comput. 18, 625–638 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  54. Jou, J.Y., Liu, C.N.: An efficient functional coverage test for HDL descriptions at RTL. In: International Conference Computer Design, pp. 325–327 (1999)

    Google Scholar 

  55. Kandel, A., Davis, H.: The First Fuzzy Decade: (bibliography on Fuzzy Sets and Their Applications). Computer Science Report. New Mexico Institute of Mining and Technology (1976)

    Google Scholar 

  56. Kandel, A.: On the decomposition of fuzzy functions. IEEE Trans. Comput. 25(11), 1124–1130 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  57. Keren, D., Sagy, G., Abboud, A., Ben-David, D., Schuster, A., Sharfman, I., Deligiannakis, A.: Geometric monitoring of heterogeneous streams. IEEE Trans. Knowl. Data Eng. 26(8), 1890–1903 (2014)

    Article  Google Scholar 

  58. Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall Inc, Upper Saddle River, NJ, USA (1995)

    MATH  Google Scholar 

  59. Koenig, S., Likhachev, M.: D*Lite. In: Eighteenth National Conference on Artificial Intelligence, pp. 476–483. American Association for Artificial Intelligence, Menlo Park, CA, USA (2002). http://dl.acm.org/citation.cfm?id=777092.777167

  60. Kolaitis, P.G., Väänänen, J.A.: Generalized quantifiers and pebble games on finite structures. In: LiCS’92, pp. 348–359. IEEE (1992)

    Google Scholar 

  61. Kreutzer, S., Riveros, C.: Quantitative monadic second-order logic. In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25–28, 2013, pp. 113–122 (2013)

    Google Scholar 

  62. Labai, N., Makowsky, J.: Logics of finite Hankel rank. In: Fields of Logic and Computation II-Essays Dedicated to Yuri Gurevich on the Occasion of his 75th Birthday, pp. 237–252 (2015)

    Google Scholar 

  63. Labai, N., Makowsky, J.: Weighted automata and monadic second order logic. In: Proceedings Fourth International Symposium on Games, Automata, Logics and Formal Verification, GandALF 2013, Borca di Cadore, Dolomites, Italy, 29–31th August 2013, pp. 122–135 (2013)

    Google Scholar 

  64. Lauer, M., Riedmiller, M.: An algorithm for distributed reinforcement learning in cooperative multi-agent systems. In: Proceedings of the Seventeenth International Conference on Machine Learning, pp. 535–542. Morgan Kaufmann (2000)

    Google Scholar 

  65. Lichtenstein, O., Pnueli, A., Zuck, L.: Logics of program. In: Lecture Notes in Computer Science, vol. 193, pp. 196–218. Springer (1985)

    Google Scholar 

  66. Lindström, P.: First order predicate logic with generalized quantifiers. Theoria 32, 186–195 (1966)

    MathSciNet  MATH  Google Scholar 

  67. Lindström, P.: On extensions of elementary logic. Theoria 35, 1–11 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  68. Łukasiewicz, J.: O logice trójwartoćiowej. Ruch Filozoficzny 5, 170–171 (1920)

    Google Scholar 

  69. Makowsky, J., Pnueli, Y.: Arity vs. alternation in second order definability. In: LFCS’94. Lecture Notes in Computer Science, vol. 813, pp. 240–252. Springer (1994)

    Google Scholar 

  70. Makowsky, J., Pnueli, Y.: Oracles and quantifiers. In: Computer Science Logic, 7th Workshop, CSL’93, Swansea, United Kingdom, September 13–17, 1993, Selected Papers, pp. 189–222 (1993). https://doi.org/10.1007/BFb0049333

  71. Makowsky, J., Ravve, E.: BCNF via attribute splitting. In: A. Düsterhöft, M. Klettke, K.D. Schewe (eds.) Conceptual Modelling and Its Theoretical Foundations-Essays Dedicated to Bernhard Thalheim on the Occasion of his 60th Birthday. Lecture Notes in Computer Science, vol. 7260, pp. 73–84. Springer (2012). https://doi.org/10.1007/978-3-642-28279-9

  72. Makowsky, J., Ravve, E.: Incremental model checking for decomposable structures. In: Mathematical Foundations of Computer Science (MFCS’95). Lecture Notes in Computer Science, vol. 969, pp. 540–551. Springer (1995)

    Google Scholar 

  73. Makowsky, J.: Compactness, embeddings and definability. In: J. Barwise, S. Feferman (eds.) Model-Theoretic Logics, Perspectives in Mathematical Logic, chap. 18, pp. 645–716. Springer (1985)

    Google Scholar 

  74. Makowsky, J.: Some observations on uniform reduction for properties invariant on the range of definable relations. Fundamenta Mathematicae 99, 199–203 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  75. Makowsky, J.: Algorithmic uses of the Feferman-Vaught theorem. Ann. Pure Appl. Logic 126(1–3), 159–213 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  76. Mandrali, E., Rahonis, G.: Recognizable tree series with discounting. Acta Cybern. 19(2), 411–439 (2009)

    MathSciNet  MATH  Google Scholar 

  77. Mathissen, C.: Definable transductions and weighted logics for texts. In: Proceedings of the 11th International Conference on Developments in Language Theory, DLT’07, pp. 324–336. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  78. Mathissen, C.: Weighted logics for nested words and algebraic formal power series. In: Proceedings of the 35th International Colloquium on Automata, Languages and Programming, Part II, ICALP’08, pp. 221–232. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  79. Meer, K., Naif, A.: Generalized finite automata over real and complex numbers. In: T. Gopal, M. Agrawal, A. Li, S. Cooper (eds.) Theory and Applications of Models of Computation: 11th Annual Conference, TAMC 2014, Chennai, India, April 11–13, 2014. Proceedings, pp. 168–187. Springer International Publishing, Cham (2014)

    Google Scholar 

  80. Meer, K., Naif, A.: Periodic generalized automata over the reals. In: Language and Automata Theory and Applications-10th International Conference, LATA 2016, Prague, Czech Republic, March 14–18, 2016, Proceedings, pp. 168–180 (2016)

    Google Scholar 

  81. Meinecke, I.: Weighted logics for traces. In: Proceedings of the First International Computer Science Conference on Theory and Applications, CSR’06, pp. 235–246. Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  82. Mogali, J., Smith, S., Rubinstein, Z.B.: Distributed decoupling of multiagent simple temporal problems. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI’16, pp. 408–415. AAAI Press (2016). http://dl.acm.org/citation.cfm?id=3060621.3060679

  83. Mohammadian, M.: Supervised learning of fuzzy logic systems. In: Encyclopedia of Artificial Intelligence, pp. 1510–1517 (2009)

    Google Scholar 

  84. Monk, J.: Mathematical Logic. Graduate Texts in Mathematics. Springer (1976)

    Google Scholar 

  85. Monmege, B.: Spécification et vérification de propriétés quantitatives: Expressions, logiques et automates. Ph.D. thesis, Laboratoire Spécification et Vérification, École Normale Supérieure de Cachan, Cedex, France (2013)

    Google Scholar 

  86. Mostowsky, A.: On a generalization of quantifiers. Fundamenta Mathematicae 44, 12–36 (1957)

    Article  MathSciNet  Google Scholar 

  87. Nola, A., Sanchez, E., Pedrycz, W., Sessa, S.: Fuzzy Relation Equations and Their Applications to Knowledge Engineering. Kluwer Academic Publishers, Norwell, MA, USA (1989)

    Book  MATH  Google Scholar 

  88. Oral, T., Polat, F.: A multi-objective incremental path planning algorithm for mobile agents. In: Proceedings of the The 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology, WI-IAT’12, vol. 02, pp. 401–408. IEEE Computer Society, Washington, DC, USA (2012). http://dx.doi.org/10.1109/WI-IAT.2012.143

  89. Plastria, F., Bruyne, S.D., Carrizosa, E.: Dimensionality reduction for classification. In: Advanced Data Mining and Applications, 4th International Conference, ADMA 2008, Chengdu, China, October 8–10, 2008. Proceedings, pp. 411–418 (2008)

    Google Scholar 

  90. Post, E.: Introduction to a General Theory of Elementary Propositions. Columbia University (1920)

    Google Scholar 

  91. Rabin, M.: A simple method for undecidability proofs and some applications. In: Y.B. Hillel (ed.) Logic, Methodology and Philosophy of Science II, Studies in Logic, pp. 58–68. North Holland (1965)

    Google Scholar 

  92. Rabin, M.: Decidability of second order theories and automata on infinite trees. Trans. Am. Math. Soc. 141, 1–35 (1969)

    MathSciNet  MATH  Google Scholar 

  93. Ravve, E.V., Volkovich, Z., Weber, G.W.: A uniform approach to incremental automated reasoning on strongly distributed structures. In: G. Gottlob, G. Sutcliffe, A. Voronkov (eds.) GCAI 2015. Global Conference on Artificial Intelligence. EasyChair Proceedings in Computing, vol. 36, pp. 229–251. EasyChair (2015)

    Google Scholar 

  94. Ravve, E., Volkovich, Z., Weber, G.W.: Effective optimization with weighted automata on decomposable trees. Optim. J. 63, 109–127 (2014). (Special Issue on Recent Advances in Continuous Optimization on the Occasion of the 25th European Conference on Operational Research (EURO XXV 2012))

    Google Scholar 

  95. Ravve, E., Volkovich, Z., Weber, G.W.: Reasoning on strongly distributed multi-agent systems. In: Proceedings of the 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, pp. 251–256 (2015)

    Google Scholar 

  96. Ravve, E., Volkovich, Z.: A systematic approach to computations on decomposable graphs. In: 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2013, Timisoara, Romania, September 23–26, 2013, pp. 398–405 (2013)

    Google Scholar 

  97. Ravve, E., Volkovich, Z.: Four scenarios of effective computations on sum-like graphs. In: Proceedings of the The 9th International Multi-Conference on Computing in the Global Informationin Technology, pp. 1–8 (2014)

    Google Scholar 

  98. Ravve, E., Volkovich, Z.: Incremental reasoning on fuzzy strongly distributed systems (2016). (To appear in Proceedings of The Eleventh International Multi-Conference on Computing in the Global Information Technology)

    Google Scholar 

  99. Ravve, E.: Maintenance of queries under database changes: a unified logic based approach. In: Foundations of Information and Knowledge Systems-9th International Symposium, FoIKS 2016, Linz, Austria, March 7–11, 2016. Proceedings, pp. 191–208 (2016)

    Google Scholar 

  100. Ravve, E.: Model checking for various notions of products. Master’s thesis, Thesis, Department of Computer Science, Technion–Israel Institute of Technology (1995)

    Google Scholar 

  101. Ravve, E.: Incremental computations over strongly distributed databases. Concurr Comput Pract. Exp. 28(11), 3061–3076 (2016)

    Article  Google Scholar 

  102. Ren, W., Cao, Y.: Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues. Springer Publishing Company, Incorporated (2013)

    MATH  Google Scholar 

  103. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier Science Inc., New York, NY, USA (2006)

    MATH  Google Scholar 

  104. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2 edn. Pearson Education (2003)

    Google Scholar 

  105. Ryzko, D., Rybinski, H.: Distributed default logic for multi-agent system. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, Hong Kong, China, 18–22 December 2006, pp. 204–210 (2006)

    Google Scholar 

  106. Salamon, T.: Design of Agent-Based Models. Eva & Tomas Bruckner Publishing, Czech Republic (2011)

    Google Scholar 

  107. Sanchez, E.: Resolution of composite fuzzy relation equations. Inf. Control 30(1), 38–48 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  108. Savku, E., Azevedo, N., Weber, G.: Optimal control of stochastic hybrid models in the framework of regime switches. In: Pinto, A.A., Zilberman, D. (eds.) Modeling, Dynamics, Optimization and Bioeconomics II, pp. 371–387. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  109. Schubert, E., Weiler, M., Kriegel, H.P.: Signitrend: scalable detection of emerging topics in textual streams by hashed significance thresholds. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’14, pp. 871–880. ACM, New York, NY, USA (2014)

    Google Scholar 

  110. Seibel, A., Schlattmann, J.: A generalized \(\alpha \)-level decomposition concept for numerical fuzzy calculus. In: Proceedings of the 16th World Congress of the International Fuzzy Systems Association (IFSA), pp. 66–69 (2015)

    Google Scholar 

  111. Shamma, J.: Cooperative Control of Distributed Multi-Agent Systems. Wiley-Interscience, New York, NY, USA (2008)

    Google Scholar 

  112. Spaan, M.T.J., Oliehoek, F.A.: Tree-based solution methods for multiagent POMDPs with delayed communication. In: Proceedings of 24th Benelux Conference on Artificial Intelligence, pp. 319–320 (2012). (Extended abstract)

    Google Scholar 

  113. Tarski, A.: A model-theoretical result concerning infinitary logics. Not. Am. Math. Soc. 8, 260–280 (1961)

    Google Scholar 

  114. Valiant, L.: A bridging model for parallel computation. Commun. ACM 33(B), 103–111 (1990)

    Google Scholar 

  115. Vardi, M.: The complexity of relational query languages. In: STOC’82, pp. 137–146. ACM (1982)

    Google Scholar 

  116. Vrba, J.: General decomposition problem of fuzzy relations. Fuzzy Sets Syst. 54(1), 69–79 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  117. Weber, G.-W., Savku, E., Kalayci, B., Akdogan, E.: Stochastic Optimal Control of Impulsive Systems under Regime Switches and Paradigm Shifts, in Finance and Economics, Biology and “Human Sciences”, Seminar at Institute of Computer Science, Poznan University of Technology, October 17 (2017)

    Google Scholar 

  118. Weiss, G. (ed.): Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge, MA, USA (1999)

    Google Scholar 

  119. Wooldridge, M.: An Introduction to MultiAgent Systems, 2nd edn. Wiley (2009)

    Google Scholar 

  120. Wooldridge, M., Jennings, N.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10, 115–152 (1995)

    Article  Google Scholar 

  121. Yang, Y., Wang, X.: On the convergence exponent of decomposable relations. Fuzzy Sets Syst. 151(2), 403–419 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  122. Yang, Y., Wang, X.: The general \(\alpha \)-decomposition problem of fuzzy relations. Inf. Sci. 177(22), 4922–4933 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  123. Ying, H.: Structural decomposition of the general MIMO fuzzy systems. Int. J. Intell. Control Syst. 1(3), 327–337 (1996)

    Article  MathSciNet  Google Scholar 

  124. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  125. Zhong, C.: A new approach to generate Fuzzy system. In: Proceeding of the IEEE Singapore International Symposium on Control Theory and Application, pp. 250–254 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Ravve .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ravve, E.V., Volkovich, Z., Weber, GW. (2021). A Logic-Based Approach to Incremental Reasoning on Multi-agent Systems. In: Pinto, A., Zilberman, D. (eds) Modeling, Dynamics, Optimization and Bioeconomics IV. ICABR DGS 2017 2018. Springer Proceedings in Mathematics & Statistics, vol 365. Springer, Cham. https://doi.org/10.1007/978-3-030-78163-7_18

Download citation

Publish with us

Policies and ethics