Abstract
We give a proof of the periodicity of quantum T-systems of type A n × A ℓ with certain spiral boundary conditions. Our proof is based on the categorification of the T-system in terms of the representation theory of quantum affine algebras, more precisely on relations between classes of Kirillov–Reshetikhin modules and of evaluation modules.
To Nicolai Reshetikhin on his 60th birthday
This is a preview of subscription content, access via your institution.
Buying options
References
J. Beck, Braid group action and quantum affine algebras, Comm. Math. Phys. 165 (1994), no. 3, 555–568
A. Berenstein and A. Zelevinsky, Quantum cluster algebras Adv. Math. 195 (2005), no. 2, 405–455.
V. Chari, Braid group actions and tensor products, Int. Math. Res. Not. 2003, no. 7, 357–382
V. Chari and D. Hernandez, Beyond Kirillov-Reshetikhin modules, in Quantum affine algebras, extended affine Lie algebras, and their applications, Contemp. Math., 506, 49–81, 2010.
G. Cerulli Irelli, B. Keller, D. Labardini-Fragoso, P-G. Plamondon, Linear independence of cluster monomials for skew-symmetric cluster algebras, Compos. Math. 149 (2013), no. 10, 1753–1764.
V. Chari and A. Pressley, Quantum affine algebras, Comm. Math. Phys. 142 (1991), no. 2, 261–283
V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge (1994)
I. Damiani, From the Drinfeld realization to the Drinfeld-Jimbo presentation of affine quantum algebras : Injectivity, Publ. Res. Inst. Math. Sci. 51 (2015), 131–171.
P. Di Francesco and R. Kedem, The solution of the quantum A 1 T-system for arbitrary boundary, Comm. Math. Phys. 313 (2012), no. 2, 329–350.
E. Frenkel and E. Mukhin, Combinatorics of q-Characters of Finite-Dimensional Representations of Quantum Affine Algebras, Comm. Math. Phys., vol 216 (2001), no. 1, 23–57.
E. Frenkel and N. Reshetikhin, The q-Characters of Representations of Quantum Affine Algebras and Deformations of W-Algebras, Recent Developments in Quantum Affine Algebras and related topics, Cont. Math., vol. 248 (1999), 163–205
S. Gautam and V. Toledano Laredo, Meromorphic tensor equivalence for Yangians and quantum loop algebras, Publ. Math. Inst. Hautes Études Sci. 125 (2017), 267–337.
D. Hernandez, Algebraic approach to q, t-characters, Adv. Math. 187, 1–52 (2004).
D. Hernandez, The Kirillov-Reshetikhin conjecture and solutions of T-systems, J. Reine Angew. Math. 596 (2006), 63–87.
D. Hernandez, On minimal affinizations of representations of quantum groups, Comm. Math. Phys. 277 (2007), no. 1, 221–259
D. Hernandez and B. Leclerc, Cluster algebras and quantum affine algebras, Duke Math. J. 164 (2015), no. 12, 2407–2460.
D. Hernandez and B. Leclerc, Quantum Grothendieck rings and derived Hall algebras, J. Reine Angew. Math. 701 (2015), 77–126.
D. Hernandez and B. Leclerc, Monoidal categorifications of cluster algebras of type A and D, in Symmetries, integrable systems and representations, Proc. Math. Stat. 40 (2013), 175–193.
D. Hernandez and B. Leclerc, A cluster algebra approach to q-characters of Kirillov-Reshetikhin modules, J. Eur. Math. Soc. 18 (2016), no. 5, 1113–1159.
D. Hernandez and H. Oya, Quantum Grothendieck ring isomorphisms, cluster algebras and Kazhdan-Lusztig algorithm, Adv. Math. 347 (2019), 192–272.
R. Inoue, O. Iyama, A. Kuniba, T. Nakanishi and J. Suzuki, Periodicities of T-systems and Y-systems, Nagoya Math. J. 197 (2010), 59–174.
B. Keller, Algèbres amassées et applications (d’après Fomin-Zelevinsky,…), Séminaire Bourbaki. Vol. 2009/2010. Exposés 1012–1026. Astérisque No. 339 (2011), Exp. No. 1014, vii, 63–90.
B. Keller, The periodicity conjecture for pairs of Dynkin diagrams, Ann. of Math. (2) 177 (2013), no. 1, 111–170.
R. Kashaev and T. Nakanishi, Classical and Quantum Dilogarithm Identities, SIGMA 7 (2011), 102.
A. Kuniba, T. Nakanishi and J. Suzuki, Functional relations in solvable lattice models. I. Functional relations and representation theory, Internat. J. Modern Phys. A 9 (1994), no. 30, 5215–5266.
A. Kirillov and N. Reshetikhin, Representations of Yangians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras, J. Soviet Math. 52, no. 3, 3156–3164 (1990); translated from Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 160, Anal. Teor. Chisel i Teor. Funktsii. 8, 211–221, 301 (1987).
E. Mukhin and C. Young, Extended T-systems, Selecta Math. (N.S.) 18 (2012), no. 3, 591–631.
H. Nakajima, Quiver varieties and t-analogs of q-characters of quantum affine algebras, Ann. of Math. (2) 160, no. 3, 1057–1097 (2004).
H. Nakajima, t-analogs of q-characters of Kirillov-Reshetikhin modules of quantum affine algebras, Represent. Theory 7 (2003), 259–274.
M. Varagnolo and E. Vasserot, Perverse sheaves and quantum Grothendieck rings, Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000), Progr. Math. 210, Birkhäuser Boston, Boston, MA, 345–365 (2003).
A. B. Zamolodchikov, On the thermodynamic Bethe ansatz equations for reflectionless ADE scattering theories, Phys. Lett. B 253 (1991), no. 3–4, 391–394.
Acknowledgements
The author is very grateful to Bernard Leclerc for many discussions over the years and to Bernhard Keller for useful remarks and explanations about [Kel2] and its consequences. The author would like to thank Laura Fedele for her careful reading and for pointing typos in a former version of this work. The author is supported by the European Research Council under the European Union’s Framework Programme H2020 with ERC Grant Agreement number 647353 Qaffine.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Hernandez, D. (2021). Quantum Periodicity and Kirillov–Reshetikhin Modules. In: Alekseev, A., Frenkel, E., Rosso, M., Webster, B., Yakimov, M. (eds) Representation Theory, Mathematical Physics, and Integrable Systems. Progress in Mathematics, vol 340. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-78148-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-78148-4_10
Published:
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-030-78147-7
Online ISBN: 978-3-030-78148-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)