Skip to main content

Quantum Periodicity and Kirillov–Reshetikhin Modules

Part of the Progress in Mathematics book series (PM,volume 340)

Abstract

We give a proof of the periodicity of quantum T-systems of type A n × A with certain spiral boundary conditions. Our proof is based on the categorification of the T-system in terms of the representation theory of quantum affine algebras, more precisely on relations between classes of Kirillov–Reshetikhin modules and of evaluation modules.

To Nicolai Reshetikhin on his 60th birthday

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-78148-4_10
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-78148-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

References

  1. J. Beck, Braid group action and quantum affine algebras, Comm. Math. Phys. 165 (1994), no. 3, 555–568

    Google Scholar 

  2. A. Berenstein and A. Zelevinsky, Quantum cluster algebras Adv. Math. 195 (2005), no. 2, 405–455.

    Google Scholar 

  3. V. Chari, Braid group actions and tensor products, Int. Math. Res. Not. 2003, no. 7, 357–382

    Google Scholar 

  4. V. Chari and D. Hernandez, Beyond Kirillov-Reshetikhin modules, in Quantum affine algebras, extended affine Lie algebras, and their applications, Contemp. Math., 506, 49–81, 2010.

    Google Scholar 

  5. G. Cerulli Irelli, B. Keller, D. Labardini-Fragoso, P-G. Plamondon, Linear independence of cluster monomials for skew-symmetric cluster algebras, Compos. Math. 149 (2013), no. 10, 1753–1764.

    Google Scholar 

  6. V. Chari and A. Pressley, Quantum affine algebras, Comm. Math. Phys. 142 (1991), no. 2, 261–283

    Google Scholar 

  7. V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge (1994)

    Google Scholar 

  8. I. Damiani, From the Drinfeld realization to the Drinfeld-Jimbo presentation of affine quantum algebras : Injectivity, Publ. Res. Inst. Math. Sci. 51 (2015), 131–171.

    Google Scholar 

  9. P. Di Francesco and R. Kedem, The solution of the quantum A 1 T-system for arbitrary boundary, Comm. Math. Phys. 313 (2012), no. 2, 329–350.

    Google Scholar 

  10. E. Frenkel and E. Mukhin, Combinatorics of q-Characters of Finite-Dimensional Representations of Quantum Affine Algebras, Comm. Math. Phys., vol 216 (2001), no. 1, 23–57.

    Google Scholar 

  11. E. Frenkel and N. Reshetikhin, The q-Characters of Representations of Quantum Affine Algebras and Deformations of W-Algebras, Recent Developments in Quantum Affine Algebras and related topics, Cont. Math., vol. 248 (1999), 163–205

    Google Scholar 

  12. S. Gautam and V. Toledano Laredo, Meromorphic tensor equivalence for Yangians and quantum loop algebras, Publ. Math. Inst. Hautes Études Sci. 125 (2017), 267–337.

    Google Scholar 

  13. D. Hernandez, Algebraic approach to q, t-characters, Adv. Math. 187, 1–52 (2004).

    Google Scholar 

  14. D. Hernandez, The Kirillov-Reshetikhin conjecture and solutions of T-systems, J. Reine Angew. Math. 596 (2006), 63–87.

    Google Scholar 

  15. D. Hernandez, On minimal affinizations of representations of quantum groups, Comm. Math. Phys. 277 (2007), no. 1, 221–259

    Google Scholar 

  16. D. Hernandez and B. Leclerc, Cluster algebras and quantum affine algebras, Duke Math. J. 164 (2015), no. 12, 2407–2460.

    Google Scholar 

  17. D. Hernandez and B. Leclerc, Quantum Grothendieck rings and derived Hall algebras, J. Reine Angew. Math. 701 (2015), 77–126.

    Google Scholar 

  18. D. Hernandez and B. Leclerc, Monoidal categorifications of cluster algebras of type A and D, in Symmetries, integrable systems and representations, Proc. Math. Stat. 40 (2013), 175–193.

    Google Scholar 

  19. D. Hernandez and B. Leclerc, A cluster algebra approach to q-characters of Kirillov-Reshetikhin modules, J. Eur. Math. Soc. 18 (2016), no. 5, 1113–1159.

    Google Scholar 

  20. D. Hernandez and H. Oya, Quantum Grothendieck ring isomorphisms, cluster algebras and Kazhdan-Lusztig algorithm, Adv. Math. 347 (2019), 192–272.

    Google Scholar 

  21. R. Inoue, O. Iyama, A. Kuniba, T. Nakanishi and J. Suzuki, Periodicities of T-systems and Y-systems, Nagoya Math. J. 197 (2010), 59–174.

    Google Scholar 

  22. B. Keller, Algèbres amassées et applications (d’après Fomin-Zelevinsky,), Séminaire Bourbaki. Vol. 2009/2010. Exposés 1012–1026. Astérisque No. 339 (2011), Exp. No. 1014, vii, 63–90.

    Google Scholar 

  23. B. Keller, The periodicity conjecture for pairs of Dynkin diagrams, Ann. of Math. (2) 177 (2013), no. 1, 111–170.

    Google Scholar 

  24. R. Kashaev and T. Nakanishi, Classical and Quantum Dilogarithm Identities, SIGMA 7 (2011), 102.

    Google Scholar 

  25. A. Kuniba, T. Nakanishi and J. Suzuki, Functional relations in solvable lattice models. I. Functional relations and representation theory, Internat. J. Modern Phys. A 9 (1994), no. 30, 5215–5266.

    Google Scholar 

  26. A. Kirillov and N. Reshetikhin, Representations of Yangians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras, J. Soviet Math. 52, no. 3, 3156–3164 (1990); translated from Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 160, Anal. Teor. Chisel i Teor. Funktsii. 8, 211–221, 301 (1987).

    Google Scholar 

  27. E. Mukhin and C. Young, Extended T-systems, Selecta Math. (N.S.) 18 (2012), no. 3, 591–631.

    Google Scholar 

  28. H. Nakajima, Quiver varieties and t-analogs of q-characters of quantum affine algebras, Ann. of Math. (2) 160, no. 3, 1057–1097 (2004).

    Google Scholar 

  29. H. Nakajima, t-analogs of q-characters of Kirillov-Reshetikhin modules of quantum affine algebras, Represent. Theory 7 (2003), 259–274.

    Google Scholar 

  30. M. Varagnolo and E. Vasserot, Perverse sheaves and quantum Grothendieck rings, Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000), Progr. Math. 210, Birkhäuser Boston, Boston, MA, 345–365 (2003).

    Google Scholar 

  31. A. B. Zamolodchikov, On the thermodynamic Bethe ansatz equations for reflectionless ADE scattering theories, Phys. Lett. B 253 (1991), no. 3–4, 391–394.

    Google Scholar 

Download references

Acknowledgements

The author is very grateful to Bernard Leclerc for many discussions over the years and to Bernhard Keller for useful remarks and explanations about [Kel2] and its consequences. The author would like to thank Laura Fedele for her careful reading and for pointing typos in a former version of this work. The author is supported by the European Research Council under the European Union’s Framework Programme H2020 with ERC Grant Agreement number 647353 Qaffine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Hernandez, D. (2021). Quantum Periodicity and Kirillov–Reshetikhin Modules. In: Alekseev, A., Frenkel, E., Rosso, M., Webster, B., Yakimov, M. (eds) Representation Theory, Mathematical Physics, and Integrable Systems. Progress in Mathematics, vol 340. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-78148-4_10

Download citation