Skip to main content

The Structure of Concurrent Process Histories

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 12717)

Abstract

We identify the algebraic structure of the material histories generated by concurrent processes. Specifically, we extend existing categorical theories of resource convertibility to capture concurrent interaction. Our formalism admits an intuitive graphical presentation via string diagrams for proarrow equipments.

This research was supported by the ESF funded Estonian IT Academy research measure (project 2014-2020.4.05.19-0001).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abramsky, S.: What are the fundamental structures of concurrency? we still don’t know! CoRR abs/1401.4973 (2014)

    Google Scholar 

  2. Cockett, J.R.B., Pastro, C.: The logic of message-passing. Sci. Comput. Program. 74, 498–533 (2009)

    CrossRef  MathSciNet  Google Scholar 

  3. Cockett, J.R.B., Seely, R.A.G.: Proof theory of the cut rule. In: Landry, E. (ed.) Categories for the Working Philosopher, pp. 223–261. Oxford University Press, Oxford (2017)

    Google Scholar 

  4. Coecke, B., Fritz, T., Spekkens, R.W.: A mathematical theory of resources. Inf. Comput. 250, 59–86 (2016)

    CrossRef  MathSciNet  Google Scholar 

  5. Dawson, R., Paré, R.: What is a free double category like? J. Pure Appl. Algebra 168(1), 19–34 (2002)

    CrossRef  MathSciNet  Google Scholar 

  6. Ehresmann, C.: Catágories structurées. Annales scientifiques de l’École Normale Supérieure 80(4), 349–426 (1963)

    CrossRef  MathSciNet  Google Scholar 

  7. Fiore, M., Paoli, S., Pronk, D.: Model structures on the category of small double categories. Algebraic Geometric Topol. 8(4), 1855–1959 (2008)

    CrossRef  MathSciNet  Google Scholar 

  8. Fong, B., Spivak, D.I.: Seven Sketches in Compositionality: An Invitation to Applied Category Theory (2018)

    Google Scholar 

  9. Grandis, M., Pare, R.: Adjoint for double categories. Cahiers de Topologie et Géométrie Différentielle Catégoriques 45(3), 193–240 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677 (1978)

    CrossRef  Google Scholar 

  11. Myers, D.J.: String Diagrams For Double Categories and Equipments. arXiv e-prints (2016)

    Google Scholar 

  12. Joyal, A., Street, R.: The geometry of tensor calculus, I. Adv. Math. 88(1), 55–112 (1991)

    CrossRef  MathSciNet  Google Scholar 

  13. Katis, P., Sabadini, N., Walters, R.F.C.: Span(Graph): a categorical algebra of transition systems. In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 307–321. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0000479

    CrossRef  Google Scholar 

  14. Mac Lane, S.: Categories for the Working Mathematician. Springer, New York (1971). https://doi.org/10.1007/978-1-4612-9839-7

    CrossRef  MATH  Google Scholar 

  15. Meseguer, J., Montanari, U.: Petri nets are monoids. Inf. Comput. 88(2), 105–155 (1990)

    CrossRef  MathSciNet  Google Scholar 

  16. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

    CrossRef  MATH  Google Scholar 

  17. Milner, R.: Communicating and Mobile Systems: The Pi-Calculus. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  18. Petri, C.A.: Communication with automata (1966)

    Google Scholar 

  19. Selinger, P.: A survey of graphical languages for monoidal categories. In: New Structures for Physics, pp. 289–355. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12821-9_4

  20. Shulman, M.: Framed bicategories and monoidal fibrations. Theory Appl. Categories 20(18), 650–738 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Shulman, M.A.: Constructing symmetric monoidal bicategories. arXiv e-prints (2010)

    Google Scholar 

  22. Wood, R.J.: Abstract pro arrows I. Cahiers de Topologie et Géométrie Différentielle Catégoriques 23(3), 279–290 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nester, C. (2021). The Structure of Concurrent Process Histories. In: Damiani, F., Dardha, O. (eds) Coordination Models and Languages. COORDINATION 2021. Lecture Notes in Computer Science(), vol 12717. Springer, Cham. https://doi.org/10.1007/978-3-030-78142-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78142-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78141-5

  • Online ISBN: 978-3-030-78142-2

  • eBook Packages: Computer ScienceComputer Science (R0)