Abstract
We identify the algebraic structure of the material histories generated by concurrent processes. Specifically, we extend existing categorical theories of resource convertibility to capture concurrent interaction. Our formalism admits an intuitive graphical presentation via string diagrams for proarrow equipments.
This research was supported by the ESF funded Estonian IT Academy research measure (project 2014-2020.4.05.19-0001).
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Abramsky, S.: What are the fundamental structures of concurrency? we still don’t know! CoRR abs/1401.4973 (2014)
Cockett, J.R.B., Pastro, C.: The logic of message-passing. Sci. Comput. Program. 74, 498–533 (2009)
Cockett, J.R.B., Seely, R.A.G.: Proof theory of the cut rule. In: Landry, E. (ed.) Categories for the Working Philosopher, pp. 223–261. Oxford University Press, Oxford (2017)
Coecke, B., Fritz, T., Spekkens, R.W.: A mathematical theory of resources. Inf. Comput. 250, 59–86 (2016)
Dawson, R., Paré, R.: What is a free double category like? J. Pure Appl. Algebra 168(1), 19–34 (2002)
Ehresmann, C.: Catágories structurées. Annales scientifiques de l’École Normale Supérieure 80(4), 349–426 (1963)
Fiore, M., Paoli, S., Pronk, D.: Model structures on the category of small double categories. Algebraic Geometric Topol. 8(4), 1855–1959 (2008)
Fong, B., Spivak, D.I.: Seven Sketches in Compositionality: An Invitation to Applied Category Theory (2018)
Grandis, M., Pare, R.: Adjoint for double categories. Cahiers de Topologie et Géométrie Différentielle Catégoriques 45(3), 193–240 (2004)
Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677 (1978)
Myers, D.J.: String Diagrams For Double Categories and Equipments. arXiv e-prints (2016)
Joyal, A., Street, R.: The geometry of tensor calculus, I. Adv. Math. 88(1), 55–112 (1991)
Katis, P., Sabadini, N., Walters, R.F.C.: Span(Graph): a categorical algebra of transition systems. In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 307–321. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0000479
Mac Lane, S.: Categories for the Working Mathematician. Springer, New York (1971). https://doi.org/10.1007/978-1-4612-9839-7
Meseguer, J., Montanari, U.: Petri nets are monoids. Inf. Comput. 88(2), 105–155 (1990)
Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3
Milner, R.: Communicating and Mobile Systems: The Pi-Calculus. Cambridge University Press, Cambridge (1999)
Petri, C.A.: Communication with automata (1966)
Selinger, P.: A survey of graphical languages for monoidal categories. In: New Structures for Physics, pp. 289–355. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12821-9_4
Shulman, M.: Framed bicategories and monoidal fibrations. Theory Appl. Categories 20(18), 650–738 (2008)
Shulman, M.A.: Constructing symmetric monoidal bicategories. arXiv e-prints (2010)
Wood, R.J.: Abstract pro arrows I. Cahiers de Topologie et Géométrie Différentielle Catégoriques 23(3), 279–290 (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Nester, C. (2021). The Structure of Concurrent Process Histories. In: Damiani, F., Dardha, O. (eds) Coordination Models and Languages. COORDINATION 2021. Lecture Notes in Computer Science(), vol 12717. Springer, Cham. https://doi.org/10.1007/978-3-030-78142-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-78142-2_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-78141-5
Online ISBN: 978-3-030-78142-2
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
http://www.ifip.org/