Skip to main content

Framework and Development Process for IoT Data Gathering

  • 183 Accesses

Part of the Studies in Systems, Decision and Control book series (SSDC,volume 379)

Abstract

The Internet of Things (IoT) is a growing area in everyday life. New applications under the umbrella term IoT are being developed continually. This development has raised the need for framework definitions for different purposes. This research introduces a special software/hardware framework for data gathering systems to be used in IoT related systems. The purpose of the research is to show the usability of a certain software/hardware combination in prototype development. The software/hardware framework has been developed during several research projects by following the same prototype development process. This is proposed as a descriptive model for the prototyping process. The main contribution of this research is the framework itself. The framework consists of a model of the system with selected components. The placement of the sensor network is also presented. The purpose of the framework is to guide and assist the construction of data gathering prototypes. Furthermore, the advantages of the framework are to support re-usability, portability, and interchangeability. This research introduces the framework, its main components, and their interconnections. In addition, the prototype development process used is presented.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-78124-8_3
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-78124-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Adapted from [7]

Fig. 3

Adapted from [18]

Fig. 4

Adapted from [18]

Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    CrossRef  Google Scholar 

  2. IEEE approved draft standard for an architectural framework for the internet of things (IoT) (2019)

    Google Scholar 

  3. Saari, M., Sillberg, P., Rantanen, P., Soini, J., Fukai, H.: Data collector service—practical approach with embedded Linux. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), International Convention on Information and Communication Technology, Electronics and Microelectronics, pp. 1037–1041. IEEE (2015)

    Google Scholar 

  4. Saari, M., Sillberg, P., Gr�nman, J., Kuusisto, M., Rantanen, P., Jaakkola, H., Henno, J. Reducing energy consumption with IoT prototyping. Acta Polytech. Hung. 16(9, SI), 73–91 (2019)

    Google Scholar 

  5. Buchenrieder, K.: Rapid prototyping of embedded hardware/software systems. In: Proceedings. Ninth International Workshop on Rapid System Prototyping (Cat. No. 98TB100237), vol. 5, pp. 2–3. IEEE Comput. Soc. (2000)

    Google Scholar 

  6. Kruger, C.P., Abu-Mahfouz, A.M., Hancke, G.P.: Rapid prototyping of a wireless sensor network gateway for the internet of things using off-the-shelf components. In: 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 1926–1931 (2015)

    Google Scholar 

  7. Babich, N.: What is rapid prototyping? (2019). Accessed 16 Dec 2020

    Google Scholar 

  8. Jensen, C., Scacchi, W.: Discovering, modeling, and re-enacting open source software development processes: a case study, pp. 1–20 (2006)

    Google Scholar 

  9. Becker, U., Hamann, D., Verlage, M.: Descriptive Modeling of Software Processes. IESE-Report No. 047.97/E (1997)

    Google Scholar 

  10. Becker-Kornstaedt, U., Webby, R.: A comprehensive schema integrating software process modeling and software measurement. IESE-Report No. 047.99/E (1999)

    Google Scholar 

  11. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems. A Cyber-Physical Systems Approach. Second Edition, vol. 195 (2017)

    Google Scholar 

  12. Kreiner, C., Steger, C., Teiniker, E., Weiss, R.: A HW/SW codesign framework based on distributed DSP virtual machines. In: Proceedings—Euromicro Symposium on Digital Systems Design: Architectures, Methods and Tools, DSD 2001, pp. 212–219 (2001)

    Google Scholar 

  13. Saha, D., Mitra, R.S., Basu, A.: Hardware software partitioning using genetic algorithm. In: Proceedings Tenth International Conference on VLSI Design, pp. 155–160. IEEE Comput. Soc. Press (1997)

    Google Scholar 

  14. Srivastava, M.B., Brodersen, R.W.: Rapid-prototyping of hardware and software in a unified framework. In: 1991 IEEE International Conference on Computer-Aided Design Digest of Technical Papers, pp. 152–155. IEEE Comput. Soc. Press (1991)

    Google Scholar 

  15. Da Li, X., He, W., Li, S.: Internet of things in industries: a survey. IEEE Trans. Ind. Inform. 10(4), 2233–2243 (2014)

    CrossRef  Google Scholar 

  16. Vakaloudis, A., O’Leary, C.: A framework for rapid integration of IoT systems with industrial environments. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), pp. 601–605. IEEE (2019)

    Google Scholar 

  17. Akyildiz, I.F., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002)

    CrossRef  Google Scholar 

  18. Saari, M., Soini, J., Grönman, J., Rantanen, P., Mäkinen, T., Sillberg, P.: Modeling the software prototyping process in a research context. In: Tropmann-Frick, M., Thalheim, B., Jaakkola, H., Kiyoki, Y., Yoshida, N. (eds.) Information Modelling and Knowledge Bases XXXII, vol. 333, pp. 107–118. IOS Press (2021)

    Google Scholar 

  19. Grönman, J., Rantanen, P., Saari, M., Sillberg, P., Vihervaara, J.: Low-cost ultrasound measurement system for accurate detection of container utilization rate. In: 41st International Convention on Information and Communication Technology, 2018. Electronics and Microelectronics (MIPRO). IEEE (2018)

    Google Scholar 

  20. Soini, J., Sillberg, P., Rantanen, P.: Prototype system for improving manually collected data quality. In: Budimac, Z., Grbac, T.G. (eds.) Proceedings of the 3rd Workshop on Software Quality Analysis, Monitoring, Improvement, and Applications, SQAMIA 2014, 19–22 Sept 2014, Lovran, Croatia, CEUR Workshop Proceedings, pp. 99–106. M. Jeusfeld c/o Redaktion Sun SITE (2014)

    Google Scholar 

  21. Soini, J., Kuusisto, M., Rantanen, P., Saari, M., Sillberg, P.: A study on an evolution of a data collection system for knowledge representation. In: Dahanayake, A., Huiskonen, J., Kiyoki, Y. (eds.) Information Modelling and Knowledge Bases XXXI, vol. 321, pp. 161–174. IOS Press (2019)

    Google Scholar 

  22. Grönman, J., Sillberg, P., Rantanen, P., Saari, M.: People counting in a public event-use case: free-to-ride bus. In: 42nd International Convention on Information and Communication Technology, 2019. Electronics and Microelectronics (MIPRO). IEEE (2019)

    Google Scholar 

  23. Grönman, J., Rantanen, P., Saari, M., Sillberg, P., Jaakkola, H.: Lessons learned from developing prototypes for customer complaint validation. In: Proceedings of the SQAMIA 2018: 7th Workshop of Software Quality, Analysis, Monitoring, Improvement, and Applications, vol. 2217, pp. 27–30. CEUR Workshop Proceedings (2018)

    Google Scholar 

  24. Liou, F.F.: Rapid Prototyping and Engineering Applications, 2nd edn. Taylor & Francis, CRC Press, Boca Raton (2019)

    CrossRef  Google Scholar 

  25. Centenaro, M., Vangelista, L., Zanella, A., Zorzi, M.: Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios. IEEE Wirel. Commun. 23(5), 60–67 (2016)

    CrossRef  Google Scholar 

  26. Raza, U., Kulkarni, P., Sooriyabandara, M.: Low power wide area networks: an overview. IEEE Commun. Surv. Tutor. 19(2), 855–873 (2017)

    CrossRef  Google Scholar 

  27. Satoto, K.I., Widianto, E.D., Sumardi: Environmental health monitoring with smartphone application. In: 2018 5th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), pp. 281–286. IEEE (2018)

    Google Scholar 

  28. Namiot, D.: Time series databases. Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL2015), vol. 1536, pp. 132–137 (2015)

    Google Scholar 

  29. Bader, A., Kopp, O., Falkenthal, M.: Survey and comparison of open source time series databases. Lecture Notes in Informatics (LNI), Proceedings—Series of the Gesellschaft fur Informatik (GI), vol. 266, pp. 249–268 (2017)

    Google Scholar 

  30. Sillberg, P., Gronman, J., Rantanen, P., Saari, M., Kuusisto, M.: Challenges in the interpretation of crowdsourced road condition data. In: 2018 International Conference on Intelligent Systems (IS), pp. 215–221. IEEE (2018)

    Google Scholar 

  31. Saari, M., Baharudin, A.M., Sillberg, P., Rantanen, P., Soini, J.: Embedded Linux controlled sensor network. In: 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1185–1189. IEEE (2016)

    Google Scholar 

  32. Saari, M., bin Baharudin, A.M., Hyrynsalmi, S.: Survey of prototyping solutions utilizing Raspberry Pi. In: 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 991–994. IEEE (2017)

    Google Scholar 

  33. Towards the utilization of cost-effective off-the-shelf devices for achieving energy savings in existing buildings. IEEE (2020)

    Google Scholar 

  34. Saari, M., Rantanen, P., Hyrynsalmi, S.: Software hardware combination for data gathering. In: Proceedings of 2020 IEEE 10th International Conference on Intelligent Systems (IS2020) (2020)

    Google Scholar 

  35. Ruuvitag technical specifications. https://ruuvi.com/files/ruuvitag-tech-spec-2019-7.pdf (2019). Accessed 23 Nov 2020

  36. Saari, M., Grönman, J., Soini, J., Rantanen, P., Mäkinen, T.: Experimenting with means to store and monitor IoT based measurement results for energy saving. In: 43rd International Convention on Information and Communication Technology, 2020. Electronics and Microelectronics (MIPRO). IEEE (2020)

    Google Scholar 

  37. Sillberg, P., Rantanen, P., Saari, M., Leppäniemi, J., Soini, J., Jaakkola, H.: Towards an IP-based alert message delivery system. In: Landgren, J., Jul, S. (eds.) ISCRAM 2009—6th International Conference on Information Systems for Crisis Response and Management: Boundary Spanning Initiatives and New Perspectives, June 2015, 8 p. Information Systems for Crisis Response and Management, ISCRAM (2009)

    Google Scholar 

  38. Sillberg, P., Saari, M., Grönman, J., Rantanen, P., Kuusisto, M. Interpretation, modeling, and visualization of crowdsourced road condition data. In: Goncalves, R., Sgurev, V., Jotsov, V., Kacpzyk, J. (eds.) Intelligent Systems: Theory, Research and Innovation in Applications, pp. 99–119. Springer, Cham (2020)

    CrossRef  Google Scholar 

  39. Babar, S., Stango, A., Prasad, N., Sen, J., Prasad, R.: Proposed embedded security framework for Internet of Things (IoT). In: 2011 2nd International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE), pp. 1–5. IEEE (2011)

    Google Scholar 

  40. Saari, M., Muzaffar bin Baharudin, A., Sillberg, P., Hyrynsalmi, S., Yan, W.: LoRa—a survey of recent research trends. In: 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 0872–0877. IEEE (2018)

    Google Scholar 

Download references

Acknowledgements

This work is part of the KIEMI (“Vähemmällä Enemmän—Kohti Kiinteistöjen Energiaminimiä”, or “Less is More: Towards Energy Minimum of Properties” in English) project and has been funded by the European Regional Development Fund and the Regional Council of Satakunta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika Saari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Saari, M., Rantanen, P., Hyrynsalmi, S., Hästbacka, D. (2022). Framework and Development Process for IoT Data Gathering. In: Sgurev, V., Jotsov, V., Kacprzyk, J. (eds) Advances in Intelligent Systems Research and Innovation. Studies in Systems, Decision and Control, vol 379. Springer, Cham. https://doi.org/10.1007/978-3-030-78124-8_3

Download citation