Skip to main content

BAP1 Tumor Predisposition Syndrome

  • Chapter
  • First Online:
Uveal Melanoma

Abstract

The BAP1 tumor predisposition syndrome results from autosomal dominant haploinsufficiency of the BAP1 tumor suppressor gene. The syndrome was identified through the findings of three independent centers researching predisposition for each of their tumors of interest. BAP1 variants have now been confirmed to be associated, in order of decreasing frequency, with BAP1-inactivated melanocytic tumors, uveal melanoma, malignant mesothelioma, cutaneous melanoma, renal cell carcinoma, and basal cell carcinoma. There are several additional unconfirmed tumors, such as hepatocellular carcinoma, cholangiocarcinoma, and meningioma that may ultimately prove to be related. The syndrome is now being more rapidly characterized as centers worldwide are pooling data on patients and their families through the BAP1 Interest Group Consortium. Knowledge of this condition may allow for prevention, early detection, and appropriate treatment of related malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harbour JW, Onken MD, Roberson ED, Duan S, Cao L, Worley LA, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330(6009):1410–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Testa JR, Cheung M, Pei J, Below JE, Tan Y, Sementino E, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011;43(10):1022–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wiesner T, Obenauf AC, Murali R, Fried I, Griewank KG, Ulz P, et al. Germline mutations in BAP1 predispose to melanocytic tumors. Nat Genet. 2011;43(10):1018–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abdel-Rahman MH, Pilarski R, Cebulla CM, Massengill JB, Christopher BN, Boru G, et al. Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J Med Genet. 2011;48(12):856–9.

    Article  CAS  PubMed  Google Scholar 

  5. Popova T, Hebert L, Jacquemin V, Gad S, Caux-Moncoutier V, Dubois-d’Enghien C, et al. Germline BAP1 mutations predispose to renal cell carcinomas. Am J Hum Genet. 2013;92(6):974–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pilarski R, Carlo M, Cebulla C, Abdel-Rahman M. BAP1 tumor predisposition syndrome. 2016 Oct 13 [Updated 2020 Sept 17]. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle 1993–2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK390611. Accessed 2020 Oct 11.

  7. Jensen DE, Proctor M, Marquis ST, Gardner HP, Ha SI, Chodosh LA, et al. BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene. 1998;16(9):1097–112.

    Article  CAS  PubMed  Google Scholar 

  8. Daou S, Hammond-Martel I, Mashtalir N, Barbour H, Gagnon J, Iannantuono NV, et al. The BAP1/ASXL2 histone H2A deubiquitinase complex regulates cell proliferation and is disrupted in cancer. J Biol Chem. 2015;290(48):28643–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carbone M, Harbour JW, Brugarolas J, Bononi A, Pagano I, Dey A, et al. Biological mechanisms and clinical significance of BAP1 mutations in human cancer. Cancer Discov. 2020;10(8):1103–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Walpole S, Pritchard AL, Cebulla CM, Pilarski R, Stautberg M, Davidorf FH, et al. Comprehensive study of the clinical phenotype of germline BAP1 variant-carrying families worldwide. J Natl Cancer Inst. 2018;110(12):1328–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wiesner T, Murali R, Fried I, Cerroni L, Busam K, Kutzner H, et al. A distinct subset of atypical Spitz tumors is characterized by BRAF mutation and loss of BAP1 expression. Am J Surg Pathol. 2012;36(6):818–30.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huang KL, Mashl RJ, Wu Y, Ritter DI, Wang J, Oh C, et al. Pathogenic germline variants in 10,389 adult cancers. Cell. 2018;173(2):355–70 e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Haugh AM, Njauw CN, Bubley JA, Verzi AE, Zhang B, Kudalkar E, et al. Genotypic and phenotypic features of BAP1 cancer syndrome: a report of 8 new families and review of cases in the literature. JAMA Dermatol. 2017;153(10):999–1006.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Njauw CN, Kim I, Piris A, Gabree M, Taylor M, Lane AM, et al. Germline BAP1 inactivation is preferentially associated with metastatic ocular melanoma and cutaneous-ocular melanoma families. PLoS One. 2012;7(4):e35295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carbone M, Ferris LK, Baumann F, Napolitano A, Lum CA, Flores EG, et al. BAP1 cancer syndrome: malignant mesothelioma, uveal and cutaneous melanoma, and MBAITs. J Transl Med. 2012;10:179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aoude LG, Vajdic CM, Kricker A, Armstrong B, Hayward NK. Prevalence of germline BAP1 mutation in a population-based sample of uveal melanoma cases. Pigment Cell Melanoma Res. 2013;26(2):278–9.

    Article  PubMed  Google Scholar 

  17. Gupta MP, Lane AM, DeAngelis MM, Mayne K, Crabtree M, Gragoudas ES, et al. Clinical characteristics of uveal melanoma in patients with germline BAP1 mutations. JAMA Ophthalmol. 2015;133(8):881–7.

    Article  PubMed  Google Scholar 

  18. Repo P, Jarvinen RS, Jantti JE, Markkinen S, Tall M, Raivio V, et al. Population-based analysis of BAP1 germline variations in patients with uveal melanoma. Hum Mol Genet. 2019;28(14):2415–26.

    Article  CAS  PubMed  Google Scholar 

  19. Turunen JA, Markkinen S, Wilska R, Saarinen S, Raivio V, Tall M, et al. BAP1 germline mutations in Finnish patients with uveal melanoma. Ophthalmology. 2016;123(5):1112–7.

    Article  PubMed  Google Scholar 

  20. Rai K, Pilarski R, Boru G, Rehman M, Saqr AH, Massengill JB, et al. Germline BAP1 alterations in familial uveal melanoma. Genes Chromosomes Cancer. 2017;56(2):168–74.

    Article  CAS  PubMed  Google Scholar 

  21. Kalirai H, Dodson A, Faqir S, Damato BE, Coupland SE. Lack of BAP1 protein expression in uveal melanoma is associated with increased metastatic risk and has utility in routine prognostic testing. Br J Cancer. 2014;111(7):1373–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Robertson AG, Shih J, Yau C, Gibb EA, Oba J, Mungall KL, et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell. 2017;32(2):204–20 e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jager MJ, Shields CL, Cebulla CM, Abdel-Rahman MH, Grossniklaus HE, Stern MH, et al. Uveal melanoma. Nat Rev Dis Primers. 2020;6(1):24.

    Article  PubMed  Google Scholar 

  24. Betti M, Casalone E, Ferrante D, Romanelli A, Grosso F, Guarrera S, et al. Inference on germline BAP1 mutations and asbestos exposure from the analysis of familial and sporadic mesothelioma in a high-risk area. Genes Chromosomes Cancer. 2015;54(1):51–62.

    Article  CAS  PubMed  Google Scholar 

  25. Ohar JA, Cheung M, Talarchek J, Howard SE, Howard TD, Hesdorffer M, et al. Germline BAP1 mutational landscape of asbestos-exposed malignant mesothelioma patients with family history of cancer. Cancer Res. 2016;76(2):206–15.

    Article  CAS  PubMed  Google Scholar 

  26. Betti M, Aspesi A, Ferrante D, Sculco M, Righi L, Mirabelli D, et al. Sensitivity to asbestos is increased in patients with mesothelioma and pathogenic germline variants in BAP1 or other DNA repair genes. Genes Chromosomes Cancer. 2018;57(11):573–83.

    Article  CAS  PubMed  Google Scholar 

  27. Baumann F, Flores E, Napolitano A, Kanodia S, Taioli E, Pass H, et al. Mesothelioma patients with germline BAP1 mutations have 7-fold improved long-term survival. Carcinogenesis. 2015;36(1):76–81.

    Article  CAS  PubMed  Google Scholar 

  28. Carbone M, Flores EG, Emi M, Johnson TA, Tsunoda T, Behner D, et al. Combined genetic and genealogic studies uncover a large BAP1 cancer syndrome kindred tracing back nine generations to a common ancestor from the 1700s. PLoS Genet. 2015;11(12):e1005633.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Cheung M, Kadariya Y, Talarchek J, Pei J, Ohar JA, Kayaleh OR, et al. Germline BAP1 mutation in a family with high incidence of multiple primary cancers and a potential gene-environment interaction. Cancer Lett. 2015;369(2):261–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu J, Kadariya Y, Cheung M, Pei J, Talarchek J, Sementino E, et al. Germline mutation of Bap1 accelerates development of asbestos-induced malignant mesothelioma. Cancer Res. 2014;74(16):4388–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kadariya Y, Cheung M, Xu J, Pei J, Sementino E, Menges CW, et al. Bap1 is a bona fide tumor suppressor: genetic evidence from mouse models carrying heterozygous Germline Bap1 mutations. Cancer Res. 2016;76(9):2836–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pastorino S, Yoshikawa Y, Pass HI, Emi M, Nasu M, Pagano I, et al. A subset of mesotheliomas with improved survival occurring in carriers of BAP1 and other germline mutations. J Clin Oncol. 2018;36(35):JCO2018790352.

    Article  Google Scholar 

  33. Wang Z, Wang XY, Li J, Zhu WW. Prognostic and clinicopathological significance of BAP1 protein expression in different types of cancer-a meta-analysis. Genet Test Mol Biomarkers. 2018;22(2):115–26.

    Article  CAS  PubMed  Google Scholar 

  34. Hassan R, Morrow B, Thomas A, Walsh T, Lee MK, Gulsuner S, et al. Inherited predisposition to malignant mesothelioma and overall survival following platinum chemotherapy. Proc Natl Acad Sci U S A. 2019;116(18):9008–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumar R, Taylor M, Miao B, Ji Z, Njauw JC, Jonsson G, et al. BAP1 has a survival role in cutaneous melanoma. J Invest Dermatol. 2015;135(4):1089–97.

    Article  CAS  PubMed  Google Scholar 

  36. Rai K, Pilarski R, Cebulla CM, Abdel-Rahman MH. Comprehensive review of BAP1 tumor predisposition syndrome with report of two new cases. Clin Genet. 2016;89(3):285–94.

    Article  CAS  PubMed  Google Scholar 

  37. Liu-Smith F, Lu Y. Opposite roles of BAP1 in overall survival of uveal melanoma and cutaneous melanoma. J Clin Med. 2020;9(2):411.

    Article  CAS  PubMed Central  Google Scholar 

  38. Haas NB, Nathanson KL. Hereditary kidney cancer syndromes. Adv Chronic Kidney Dis. 2014;21(1):81–90.

    Article  PubMed  Google Scholar 

  39. Wu J, Wang H, Ricketts CJ, Yang Y, Merino MJ, Zhang H, et al. Germline mutations of renal cancer predisposition genes and clinical relevance in Chinese patients with sporadic, early-onset disease. Cancer. 2019;125(7):1060–9.

    Article  CAS  PubMed  Google Scholar 

  40. Carlo MI, Mukherjee S, Mandelker D, Vijai J, Kemel Y, Zhang L, et al. Prevalence of germline mutations in cancer susceptibility genes in patients with advanced renal cell carcinoma. JAMA Oncol. 2018;4(9):1228–35.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hakimi AA, Chen YB, Wren J, Gonen M, Abdel-Wahab O, Heguy A, et al. Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. Eur Urol. 2013;63(5):848–54.

    Article  PubMed  Google Scholar 

  42. Kapur P, Pena-Llopis S, Christie A, Zhrebker L, Pavia-Jimenez A, Rathmell WK, et al. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol. 2013;14(2):159–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miura Y, Inoshita N, Ikeda M, Miyama Y, Oki R, Oka S, et al. Loss of BAP1 protein expression in the first metastatic site predicts prognosis in patients with clear cell renal cell carcinoma. Urol Oncol. 2017;35(6):386–91.

    Article  CAS  PubMed  Google Scholar 

  44. da Costa WH, da Cunha IW, Fares AF, Bezerra SM, Shultz L, Clavijo DA, et al. Prognostic impact of concomitant loss of PBRM1 and BAP1 protein expression in early stages of clear cell renal cell carcinoma. Urol Oncol. 2018;36(5):243 e1–8.

    Article  CAS  Google Scholar 

  45. Wi YC, Moon A, Jung MJ, Kim Y, Bang SS, Jang K, et al. Loss of nuclear BAP1 expression is associated with high WHO/ISUP grade in clear cell renal cell carcinoma. J Pathol Transl Med. 2018;52(6):378–85.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pena-Llopis S, Vega-Rubin-de-Celis S, Liao A, Leng N, Pavia-Jimenez A, Wang S, et al. BAP1 loss defines a new class of renal cell carcinoma. Nat Genet. 2012;44(7):751–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de la Fouchardiere A, Cabaret O, Savin L, Combemale P, Schvartz H, Penet C, et al. Germline BAP1 mutations predispose also to multiple basal cell carcinomas. Clin Genet. 2015;88(3):273–7.

    Article  PubMed  CAS  Google Scholar 

  48. Mochel MC, Piris A, Nose V, Hoang MP. Loss of BAP1 expression in basal cell carcinomas in patients with germline BAP1 mutations. Am J Clin Pathol. 2015;143(6):901–4.

    Article  CAS  PubMed  Google Scholar 

  49. Wadt KA, Aoude LG, Johansson P, Solinas A, Pritchard A, Crainic O, et al. A recurrent germline BAP1 mutation and extension of the BAP1 tumor predisposition spectrum to include basal cell carcinoma. Clin Genet. 2015;88(3):267–72.

    Article  CAS  PubMed  Google Scholar 

  50. de la Fouchardiere A, Cabaret O, Petre J, Aydin S, Leroy A, de Potter P, et al. Primary leptomeningeal melanoma is part of the BAP1-related cancer syndrome. Acta Neuropathol. 2015;129(6):921–3.

    Article  PubMed  Google Scholar 

  51. Shankar GM, Abedalthagafi M, Vaubel RA, Merrill PH, Nayyar N, Gill CM, et al. Germline and somatic BAP1 mutations in high-grade rhabdoid meningiomas. Neuro-Oncology. 2017;19(4):535–45.

    CAS  PubMed  Google Scholar 

  52. Pilarski R, Cebulla CM, Massengill JB, Rai K, Rich T, Strong L, et al. Expanding the clinical phenotype of hereditary BAP1 cancer predisposition syndrome, reporting three new cases. Genes Chromosomes Cancer. 2014;53(2):177–82.

    Article  CAS  PubMed  Google Scholar 

  53. Abdel-Rahman MH, Rai K, Pilarski R, Davidorf FH, Cebulla CM. Germline BAP1 mutations misreported as somatic based on tumor-only testing. Familial Cancer. 2016;15(2):327–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wadt K, Choi J, Chung JY, Kiilgaard J, Heegaard S, Drzewiecki KT, et al. A cryptic BAP1 splice mutation in a family with uveal and cutaneous melanoma, and paraganglioma. Pigment Cell Melanoma Res. 2012;25(6):815–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aoude LG, Wadt K, Bojesen A, Cruger D, Borg A, Trent JM, et al. A BAP1 mutation in a Danish family predisposes to uveal melanoma and other cancers. PLoS One. 2013;8(8):e72144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McDonnell KJ, Gallanis GT, Heller KA, Melas M, Idos GE, Culver JO, et al. A novel BAP1 mutation is associated with melanocytic neoplasms and thyroid cancer. Cancer Genet. 2016;209(3):75–81.

    Article  CAS  PubMed  Google Scholar 

  57. Tesch ME, Pater JA, Vandekerkhove G, Wang G, Binnington K, So AI, et al. Concurrent germline and somatic pathogenic BAP1 variants in a patient with metastatic bladder cancer. NPJ Genom Med. 2020;5:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Boru G, Grosel TW, Pilarski R, Stautberg M, Massengill JB, Jeter J, et al. Germline large deletion of BAP1 and decreased expression in non-tumor choroid in uveal melanoma patients with high risk for inherited cancer. Genes Chromosomes Cancer. 2019;58(9):650–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sinilnikova OM, Egan KM, Quinn JL, Boutrand L, Lenoir GM, Stoppa-Lyonnet D, et al. Germline brca2 sequence variants in patients with ocular melanoma. Int J Cancer. 1999;82(3):325–8.

    Article  CAS  PubMed  Google Scholar 

  60. Iscovich J, Abdulrazik M, Cour C, Fischbein A, Pe’er J, Goldgar DE. Prevalence of the BRCA2 6174 del T mutation in Israeli uveal melanoma patients. Int J Cancer. 2002;98(1):42–4.

    Article  CAS  PubMed  Google Scholar 

  61. Scott RJ, Vajdic CM, Armstrong BK, Ainsworth CJ, Meldrum CJ, Aitken JF, et al. BRCA2 mutations in a population-based series of patients with ocular melanoma. Int J Cancer. 2002;102(2):188–91.

    Article  CAS  PubMed  Google Scholar 

  62. Moran A, O’Hara C, Khan S, Shack L, Woodward E, Maher ER, et al. Risk of cancer other than breast or ovarian in individuals with BRCA1 and BRCA2 mutations. Familial Cancer. 2012;11(2):235–42.

    Article  CAS  PubMed  Google Scholar 

  63. Abdel-Rahman MH, Pilarski R, Fatehchand K, Davidorf FH, Cebulla CM. Hereditary predisposition to uveal melanoma. In: Genetics and genomics of eye disease: advancing to precision medicine. Academic Press; 2020. p. 137–51.

    Chapter  Google Scholar 

  64. Abdel-Rahman MH, Sample KM, Pilarski R, Walsh T, Grosel T, Kinnamon D, et al. Whole exome sequencing identifies candidate genes associated with hereditary predisposition to Uveal melanoma. Ophthalmology. 2020;127(5):668–78.

    Article  PubMed  Google Scholar 

  65. Panou V, Gadiraju M, Wolin A, Weipert CM, Skarda E, Husain AN, et al. Frequency of germline mutations in cancer susceptibility genes in malignant mesothelioma. J Clin Oncol. 2018;36(28):2863–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Toussi A, Mans N, Welborn J, Kiuru M. Germline mutations predisposing to melanoma. J Cutan Pathol. 2020;47(7):606–16.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Star P, Goodwin A, Kapoor R, Conway RM, Long GV, Scolyer RA, et al. Germline BAP1-positive patients: the dilemmas of cancer surveillance and a proposed interdisciplinary consensus monitoring strategy. Eur J Cancer. 2018;92:48–53.

    Article  CAS  PubMed  Google Scholar 

  68. Rao PK, Barker C, Coit DG, Joseph RW, Materin M, Rengan R, et al. NCCN guidelines insights: uveal melanoma, version 1.2019. J Natl Compr Cancer Netw. 2020;18(2):120–31.

    Google Scholar 

  69. Landreville S, Agapova OA, Matatall KA, Kneass ZT, Onken MD, Lee RS, et al. Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma. Clin Cancer Res. 2012;18(2):408–16.

    Article  CAS  PubMed  Google Scholar 

  70. Sacco JJ, Kenyani J, Butt Z, Carter R, Chew HY, Cheeseman LP, et al. Loss of the deubiquitylase BAP1 alters class I histone deacetylase expression and sensitivity of mesothelioma cells to HDAC inhibitors. Oncotarget. 2015;6(15):13757–71.

    Article  PubMed  PubMed Central  Google Scholar 

  71. LaFave LM, Beguelin W, Koche R, Teater M, Spitzer B, Chramiec A, et al. Loss of BAP1 function leads to EZH2-dependent transformation. Nat Med. 2015;21(11):1344–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sun C, Zhao C, Li S, Wang J, Zhou Q, Sun J, et al. EZH2 expression is increased in BAP1-mutant renal clear cell carcinoma and is related to poor prognosis. J Cancer. 2018;9(20):3787–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zauderer MG, Szlosarek P, Le Moulec S, Popat S, Taylor P, Planchard D. Phase 2, multicenter study of the EZH2 inhibitor tazemetostat as monotherapy in adults with relapsed or refractory (R/R) malignant mesothelioma (MM) with BAP1 inactivation. J Clin Oncol. 2018;36(15):8515.

    Article  Google Scholar 

  74. Zauderer MG, Szlosarek PW, Le Moulec S, Popat S, Taylor P, Planchard D, et al. Safety and efficacy of tazemetostat, an enhancer of zeste-homolog 2 inhibitor, in patients with relapsed or refractory malignant mesothelioma. J Clin Oncol. 2020;38(15):9058.

    Article  Google Scholar 

  75. George TJ, DeRemer DL, Parekh HD, Lee JH, Markham MJ, Daily KC, et al. Phase II trial of the PARP inhibitor, niraparib, in BAP1 and other DNA damage response (DDR) pathway deficient neoplasms including cholangiocarcinoma. J Clin Oncol. 2020;38(4).

    Google Scholar 

  76. Hassan R, Mian I, Wagner C, Mallory Y, Agra M, Padiernos MS, et al. Phase II study of olaparib in malignant mesothelioma (MM) to correlate efficacy with germline and somatic mutations in DNA repair genes. J Clin Oncol. 2020;38(15):9054.

    Article  Google Scholar 

  77. Jin S, Wu J, Zhu Y, Gu W, Wan F, Xiao W, et al. Comprehensive analysis of BAP1 somatic mutation in clear cell renal cell carcinoma to explore potential mechanisms in Silico. J Cancer. 2018;9(22):4108–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. SKCCCaJ H. Phase II Study of olaparib in metastatic renal cell carcinoma patients harboring a BAP-1 or Other DNA Repair Gene Mutations (ORCHID) ClincalTrials.gov: US National Library of Medicine; 2020 [updated 2020 June 9]. Available from: https://clinicaltrials.gov/show/NCT03786796. Accessed 2020 Dec 15.

  79. Souri Z, Wierenga APA, van Weeghel C, van der Velden PA, Kroes WGM, Luyten GPM, et al. Loss of BAP1 is associated with upregulation of the NFkB pathway and increased HLA class I expression in uveal melanoma. Cancers (Basel). 2019;11(8):1102.

    Article  CAS  Google Scholar 

  80. Durante MA, Rodriguez DA, Kurtenbach S, Kuznetsov JN, Sanchez MI, Decatur CL, et al. Single-cell analysis reveals new evolutionary complexity in uveal melanoma. Nat Commun. 2020;11(1):496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Figueiredo CR, Kalirai H, Sacco JJ, Azevedo RA, Duckworth A, Slupsky JR, et al. Loss of BAP1 expression is associated with an immunosuppressive microenvironment in uveal melanoma, with implications for immunotherapy development. J Pathol. 2020;250(4):420–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ladanyi M, Sanchez Vega F, Zauderer M. Loss of BAP1 as a candidate predictive biomarker for immunotherapy of mesothelioma. Genome Med. 2019;11(1):18.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Shrestha R, Nabavi N, Lin YY, Mo F, Anderson S, Volik S, et al. BAP1 haploinsufficiency predicts a distinct immunogenic class of malignant peritoneal mesothelioma. Genome Med. 2019;11(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhou Q, Qi Y, Wang Z, Zeng H, Zhang H, Liu Z, et al. CCR5 blockade inflames antitumor immunity in BAP1-mutant clear cell renal cell carcinoma. J Immunother Cancer. 2020;8(1):e000228.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ismail IH, Davidson R, Gagne JP, Xu ZZ, Poirier GG, Hendzel MJ. Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Res. 2014;74(16):4282–94.

    Article  CAS  PubMed  Google Scholar 

  86. Yu H, Pak H, Hammond-Martel I, Ghram M, Rodrigue A, Daou S, et al. Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc Natl Acad Sci U S A. 2014;111(1):285–90.

    Article  CAS  PubMed  Google Scholar 

  87. Zhao W, Steinfeld JB, Liang F, Chen X, Maranon DG, Jian Ma C, et al. BRCA1-BARD1 promotes RAD51-mediated homologous DNA pairing. Nature. 2017;550(7676):360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Machida YJ, Machida Y, Vashisht AA, Wohlschlegel JA, Dutta A. The deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1. J Biol Chem. 2009;284(49):34179–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yu H, Mashtalir N, Daou S, Hammond-Martel I, Ross J, Sui G, et al. The ubiquitin carboxyl hydrolase BAP1 forms a ternary complex with YY1 and HCF-1 and is a critical regulator of gene expression. Mol Cell Biol. 2010;30(21):5071–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ji Z, Mohammed H, Webber A, Ridsdale J, Han N, Carroll JS, et al. The forkhead transcription factor FOXK2 acts as a chromatin targeting factor for the BAP1-containing histone deubiquitinase complex. Nucleic Acids Res. 2014;42(10):6232–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Okino Y, Machida Y, Frankland-Searby S, Machida YJ. BRCA1-associated protein 1 (BAP1) deubiquitinase antagonizes the ubiquitin-mediated activation of FoxK2 target genes. J Biol Chem. 2015;290(3):1580–91.

    Article  PubMed  CAS  Google Scholar 

  92. Louie BH, Kurzrock R. BAP1: not just a BRCA1-associated protein. Cancer Treat Rev. 2020;90:102091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nishikawa H, Wu W, Koike A, Kojima R, Gomi H, Fukuda M, et al. BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity. Cancer Res. 2009;69(1):111–9.

    Article  CAS  PubMed  Google Scholar 

  94. Scheuermann JC, de Ayala Alonso AG, Oktaba K, Ly-Hartig N, McGinty RK, Fraterman S, et al. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature. 2010;465(7295):243–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bononi A, Giorgi C, Patergnani S, Larson D, Verbruggen K, Tanji M, et al. BAP1 regulates IP3R3-mediated Ca(2+) flux to mitochondria suppressing cell transformation. Nature. 2017;546(7659):549–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sime W, Niu Q, Abassi Y, Masoumi KC, Zarrizi R, Kohler JB, et al. BAP1 induces cell death via interaction with 14-3-3 in neuroblastoma. Cell Death Dis. 2018;9(5):458.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Zhang Y, Shi J, Liu X, Feng L, Gong Z, Koppula P, et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol. 2018;20(10):1181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gezgin G, Dogrusoz M, van Essen TH, Kroes WGM, Luyten GPM, van der Velden PA, et al. Genetic evolution of uveal melanoma guides the development of an inflammatory microenvironment. Cancer Immunol Immunother. 2017;66(7):903–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Lillian Mannix for the technical support. We thank Molly Schmitz for the artwork. We thank the Ohio Lions Eye Research Foundation, the Patti Blow Research Fund, and The Ohio State University Department of Ophthalmology and Visual Sciences for the research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colleen M. Cebulla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, S., Abdel-Rahman, M.H., Pilarski, R., Davidorf, F.H., Cebulla, C.M. (2021). BAP1 Tumor Predisposition Syndrome. In: Bernicker, E.H. (eds) Uveal Melanoma. Springer, Cham. https://doi.org/10.1007/978-3-030-78117-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78117-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78116-3

  • Online ISBN: 978-3-030-78117-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics